/- Copyright (c) 2015 William Peterson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: William Peterson, Jeremy Avigad Extended gcd, Bezout's theorem, chinese remainder theorem. -/ import data.nat.div data.int open nat int open eq.ops well_founded decidable prod private definition pair_nat.lt : ℕ × ℕ → ℕ × ℕ → Prop := measure pr₂ private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20 local attribute pair_nat.lt.wf [instance] local infixl `≺`:50 := pair_nat.lt private definition gcd.lt.dec (x y₁ : ℕ) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) := !nat.mod_lt (succ_pos y₁) private definition egcd_rec_f (z : ℤ) : ℤ → ℤ → ℤ × ℤ := λ s t, (t, s - t * z) definition egcd.F : Π (p₁ : ℕ × ℕ), (Π p₂ : ℕ × ℕ, p₂ ≺ p₁ → ℤ × ℤ) → ℤ × ℤ | (x, y) := nat.cases_on y (λ f, (1, 0) ) (λ y₁ (f : Π p₂, p₂ ≺ (x, succ y₁) → ℤ × ℤ), let bz := f (succ y₁, x mod succ y₁) !gcd.lt.dec in prod.cases_on bz (egcd_rec_f (x div succ y₁))) definition egcd (x y : ℕ) := fix egcd.F (pair x y) theorem egcd_zero (x : ℕ) : egcd x 0 = (1, 0) := well_founded.fix_eq egcd.F (x, 0) theorem egcd_succ (x y : ℕ) : egcd x (succ y) = prod.cases_on (egcd (succ y) (x mod succ y)) (egcd_rec_f (x div succ y)) := well_founded.fix_eq egcd.F (x, succ y) theorem egcd_of_pos (x : ℕ) {y : ℕ} (ypos : y > 0) : let erec := egcd y (x mod y), u := pr₁ erec, v := pr₂ erec in egcd x y = (v, u - v * (x div y)) := obtain y' (yeq : y = succ y'), from exists_eq_succ_of_pos ypos, by rewrite [yeq, egcd_succ, -prod.eta (egcd _ _)] theorem egcd_prop (x y : ℕ) : (pr₁ (egcd x y)) * x + (pr₂ (egcd x y)) * y = gcd x y := gcd.induction x y (take m, by rewrite [egcd_zero, ▸*, int.mul_zero, int.one_mul]) (take m n, assume npos : 0 < n, assume IH, begin let H := egcd_of_pos m npos, esimp at H, rewrite [H, ▸*, gcd_rec, -IH, add.comm (#int _ * _), -of_nat_mod, ↑modulo], rewrite [*int.mul_sub_right_distrib, *int.mul_sub_left_distrib, *mul.left_distrib], rewrite [sub_add_eq_add_sub, *sub_eq_add_neg, int.add.assoc, of_nat_div, *int.mul.assoc] end) theorem Bezout (x y : ℕ) : ∃ a b : ℤ, a * x + b * y = gcd x y := exists.intro _ (exists.intro _ (egcd_prop x y))