/* Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include "util/rb_map.h" #include "util/optional.h" namespace lean { /** \brief (template for) Union-find datastructure that "explains" implied equalities. We use functional datastructures to be able to have a O(1) copy operation. Each join/union is decorated with a justification. \c cmp implements a total order on \c node. That is, it provides the method: int operator()(node const & n1, node const & n2) const s.t. the result is negative when n1 < n2, 0 if n1 == n2, and positive if n1 > n2. The implementation also provides a method to traverse the elements of an equivalence class. The implementation is based on a datastructure used in the Simplify theorem prover. Since it provides extra functionality, it does not implement the O(n*alpha(n)) amortized time per operation algorithm. */ template class union_find : private cmp { rb_map m_root; rb_map m_next; rb_map m_rank; rb_map, cmp> m_jst; bool is_equal(node const & n1, node const & n2) const { return cmp::operator()(n1, n2) == 0; } unsigned rank(node const & n) const { if (auto r = m_rank.find(n)) return *r; else return 0; } void set_rank(node const & n, unsigned r) { m_rank.insert(n, r); } node const & root(node const & n) const { if (auto r = m_root.find(n)) return *r; else return n; } void set_root(node const & n, node const & r) { m_root.insert(n, r); } node const & next(node const & n) const { if (auto r = m_next.find(n)) return *r; else return n; } void set_next(node const & n, node const & nx) { m_next.insert(n, nx); } void set_justification(node const & n, node const & t, jst const & j) { m_jst.insert(n, mk_pair(t, j)); } // for debugging purposes only bool check_inv(node const & n) const { node r = root(n); unsigned sz = size(r); node it = n; do { lean_assert_eq(root(it), r); lean_assert(reaches(it, r)); lean_assert(size(it), sz); it = next(it); } while (!is_equal(it, n)); return true; } void join_core(node const & n1, node r1, node const & n2, node r2, jst const & j) { // r1 will be the root of the resulting equivalence class. DEBUG_CODE(unsigned sz1 = size(n1); unsigned sz2 = size(n2);); // Step 1) update m_jst // // Given justification paths // n1 -> ... -> r1 // n2 -> ... -> r2 // we generate the path // r2 -> ... -> n2 -> n1 -> ... -> r1 buffer> trace; node it2 = n2; while (pair const * p = m_jst.find(it2)) { trace.push_back(*p); it2 = p->first; } lean_assert(is_equal(it2, r2)); unsigned i = trace.size(); while (i > 1) { --i; set_justification(trace[i].first, trace[i-1].first, trace[i].second); } if (i > 0) { set_justification(trace[0].first, n2, trace[0].second); } set_justification(n2, n1, j); // Step 2) update m_root of nodes in n2 equivalence class to r1 it2 = n2; do { set_root(it2, r1); it2 = next(it2); } while (!is_equal(it2, n2)); // Step 3) update m_next of r1 and r2 node next1 = next(r1); node next2 = next(r2); set_next(r1, next2); set_next(r2, next1); lean_assert(check_inv(r1)); lean_assert_eq(size(n1), sz1 + sz2); } /** \brief Return true if \c s reaches \c r by following m_jst edges */ bool reaches(node const & s, node const & r) const { node it = s; while (true) { if (is_equal(it, r)) return true; pair const * p = m_jst.find(it); if (p) { it = p->first; } else { return false; } } } void explain_core(node const & n1, node const & n2, node const & r, buffer & js) const { lean_assert(is_equal(root(n1), r)); lean_assert(is_equal(root(n2), r)); node it1 = n1; while (true) { if (reaches(n2, it1)) { // it is the common in the paths n1 -> r and n2 -> r node it2 = n2; unsigned sz1 = js.size(); while (true) { if (is_equal(it2, it1)) { std::reverse(js.begin() + sz1, js.end()); return; } pair const * p = m_jst.find(it2); lean_assert(p); js.push_back(p->second); it2 = p->first; } } else { pair const * p = m_jst.find(it1); lean_assert(p); js.push_back(p->second); it1 = p->first; } } } public: union_find(cmp const & c = cmp()):cmp(c) {} /** \brief Merge the equivalence class of \c n1 with \c n2 using justification \c j. */ void join(node const & n1, node const & n2, jst const & j) { node const & r1 = root(n1); node const & r2 = root(n2); if (is_equal(r1, r2)) return; unsigned k1 = rank(n1); unsigned k2 = rank(n2); if (k1 > k2) { join_core(n1, r1, n2, r2, j); } else if (k1 == k2) { join_core(n1, r1, n2, r2, j); set_rank(n1, k1+1); } else { join_core(n2, r2, n1, r1, j); } } /** \brief Return the size of the equivalence class containing \c n */ unsigned size(node const & n) const { unsigned r = 0; node it = n; do { lean_assert(is_eq(it, n)); r++; it = next(it); } while (!is_equal(it, n)); return r; } /** \brief Return the representative for the equivalence class containing \c n. */ node rep(node const & n) const { return root(n); } /** \brief Return true iff \c n1 and \c n2 are in the same equivalence class. */ bool is_eq(node const & n1, node const & n2) const { return is_equal(rep(n1), rep(n2)); } /** \brief For each node \c m in the equivalence class of \c n, execute f(m) */ template void for_each(node const & n, F f) const { node it = n; do { lean_assert(is_eq(it, n)); f(it); it = next(it); } while (!is_equal(it, n)); } /** \brief If is_eq(n1, n2), then return true and store the justifications that can be used to produce a transitivity+symmetry proof for n1 = n2 */ bool explain(node const & n1, node const & n2, buffer & js) const { node r1 = root(n1); node r2 = root(n2); if (is_equal(r1, r2)) { if (rank(r1) >= rank(r2)) { explain_core(n1, n2, r1, js); } else { explain_core(n2, n1, r1, js); std::reverse(js.begin(), js.end()); } return true; } else { return false; } } }; }