/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "util/debug.h" #include "util/int64.h" #include "util/numerics/remainder.h" #include "util/numerics/primes.h" #include "util/numerics/power.h" #include "util/numerics/numeric_traits.h" namespace lean { /** \brief The Z/pZ field (the set of integers modulo a prime p). We use machine integers to represent the values. That is, we only consider primes < 2^32 - 1. The values are encoded as a pair (value, p). We want to be able to dynamically change the prime p. This feature is needed when implementing some algorithms based on modular arithmetic. */ class zpz { unsigned m_value; unsigned m_p; bool is_normalized() const { return m_value < m_p; } void normalize() { m_value %= m_p; } public: zpz():m_value(0), m_p(2) {} zpz(unsigned v, unsigned p):m_value(v), m_p(p) { lean_assert(is_prime(p)); } unsigned p() { return m_p; } unsigned hash() const { return m_value; } unsigned get_unsigned_int() const { return m_value; } void set_p(unsigned p) { lean_assert(is_prime(p)); m_p = p; normalize(); } friend void swap(zpz & a, zpz & b) { std::swap(a.m_value, b.m_value); std::swap(a.m_p, b.m_p); } friend bool operator==(zpz const & a, zpz const & b) { return a.m_value == b.m_value; } friend bool operator!=(zpz const & a, zpz const & b) { return !(a == b); } friend bool operator<(zpz const & a, zpz const & b) { return a.m_value < b.m_value; } friend bool operator>(zpz const & a, zpz const & b) { return a.m_value > b.m_value; } friend bool operator<=(zpz const & a, zpz const & b) { return a.m_value <= b.m_value; } friend bool operator>=(zpz const & a, zpz const & b) { return a.m_value >= b.m_value; } friend bool operator==(zpz const & a, unsigned b) { return a.m_value == b; } friend bool operator!=(zpz const & a, unsigned b) { return !(a == b); } friend bool operator<(zpz const & a, unsigned b) { return a.m_value < b; } friend bool operator>(zpz const & a, unsigned b) { return a.m_value > b; } friend bool operator<=(zpz const & a, unsigned b) { return a.m_value <= b; } friend bool operator>=(zpz const & a, unsigned b) { return a.m_value >= b; } friend bool operator==(unsigned a, zpz const & b) { return a == b.m_value; } friend bool operator!=(unsigned a, zpz const & b) { return !(a == b); } friend bool operator<(unsigned a, zpz const & b) { return a < b.m_value; } friend bool operator>(unsigned a, zpz const & b) { return a > b.m_value; } friend bool operator<=(unsigned a, zpz const & b) { return a <= b.m_value; } friend bool operator>=(unsigned a, zpz const & b) { return a >= b.m_value; } zpz & operator=(zpz const & v) { m_value = v.m_value; m_p = v.m_p; lean_assert(is_normalized()); return *this; } zpz & operator=(unsigned v) { m_value = v; normalize(); return *this; } zpz & operator+=(unsigned v) { m_value = (static_cast(m_value) + static_cast(v)) % m_p; return *this; } zpz & operator+=(zpz const & v) { return operator+=(v.m_value); } zpz & operator*=(unsigned v) { m_value = (static_cast(m_value) * static_cast(v)) % m_p; return *this; } zpz & operator*=(zpz const & v) { return operator*=(v.m_value); } zpz & operator-=(unsigned v) { m_value = remainder(static_cast(m_value) - static_cast(v), static_cast(m_p)); return *this; } zpz & operator-=(zpz const & v) { return operator-=(v.m_value); } zpz & operator++() { m_value++; if (m_value == m_p) m_value = 0; return *this; } zpz & operator--() { if (m_value == 0) m_value = m_p - 1; else m_value--; return *this; } zpz operator++(int) { zpz tmp(*this); operator++(); return tmp; } zpz operator--(int) { zpz tmp(*this); operator--(); return tmp; } void inv(); void neg() { m_value = remainder(-static_cast(m_value), static_cast(m_p)); } zpz & operator/=(zpz v) { v.inv(); return operator*=(v); return *this; } zpz & operator/=(unsigned v) { return operator/=(zpz(v, m_p)); } friend zpz operator+(zpz a, zpz const & b) { return a += b; } friend zpz operator+(zpz a, unsigned b) { return a += b; } friend zpz operator+(unsigned a, zpz b) { return b += a; } friend zpz operator-(zpz a, zpz const & b) { return a -= b; } friend zpz operator-(zpz a, unsigned b) { return a -= b; } friend zpz operator-(unsigned a, zpz b) { b.neg(); return b += a; } friend zpz operator*(zpz a, zpz const & b) { return a *= b; } friend zpz operator*(zpz a, unsigned b) { return a *= b; } friend zpz operator*(unsigned a, zpz b) { return b *= a; } friend zpz operator/(zpz a, zpz const & b) { return a /= b; } friend zpz operator/(zpz a, unsigned b) { return a /= b; } friend zpz operator/(unsigned a, zpz b) { b.inv(); return b *= a; } friend std::ostream & operator<<(std::ostream & out, zpz const & z) { out << z.m_value; return out; } }; template<> class numeric_traits { public: static bool precise() { return true; } static bool is_zero(zpz const & v) { return v == 0; } static bool is_pos(zpz const & v) { return v > 0; } static bool is_neg(zpz const & ) { return false; } static void set_rounding(bool ) {} static void neg(zpz & v) { v.neg(); } static void reset(zpz & v) { v = 0; } // v <- v^k static void power(zpz & v, unsigned k) { v = lean::power(v, k); } static zpz const & zero(); }; }