/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about W-types (well-founded trees) -/ import .sigma .pi open eq equiv is_equiv sigma sigma.ops inductive Wtype.{l k} {A : Type.{l}} (B : A → Type.{k}) : Type.{max l k} := sup : Π (a : A), (B a → Wtype.{l k} B) → Wtype.{l k} B namespace Wtype notation `W` binders `, ` r:(scoped B, Wtype B) := r universe variables u v variables {A A' : Type.{u}} {B B' : A → Type.{v}} {C : Π(a : A), B a → Type} {a a' : A} {f : B a → W a, B a} {f' : B a' → W a, B a} {w w' : W(a : A), B a} protected definition pr1 [unfold 3] (w : W(a : A), B a) : A := by cases w with a f; exact a protected definition pr2 [unfold 3] (w : W(a : A), B a) : B (Wtype.pr1 w) → W(a : A), B a := by cases w with a f; exact f namespace ops postfix `.1`:(max+1) := Wtype.pr1 postfix `.2`:(max+1) := Wtype.pr2 notation `⟨` a `, ` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \> end ops open ops protected definition eta [unfold 3] (w : W a, B a) : ⟨w.1 , w.2⟩ = w := by cases w; exact idp definition sup_eq_sup [unfold 8] (p : a = a') (q : f =[p] f') : ⟨a, f⟩ = ⟨a', f'⟩ := by cases q; exact idp definition Wtype_eq [unfold 3 4] (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : w = w' := by cases w; cases w';exact (sup_eq_sup p q) definition Wtype_eq_pr1 [unfold 5] (p : w = w') : w.1 = w'.1 := by cases p;exact idp definition Wtype_eq_pr2 [unfold 5] (p : w = w') : w.2 =[Wtype_eq_pr1 p] w'.2 := by cases p;exact idpo namespace ops postfix `..1`:(max+1) := Wtype_eq_pr1 postfix `..2`:(max+1) := Wtype_eq_pr2 end ops open ops open sigma definition sup_path_W (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : ⟨(Wtype_eq p q)..1, (Wtype_eq p q)..2⟩ = ⟨p, q⟩ := by cases w; cases w'; cases q; exact idp definition pr1_path_W (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : (Wtype_eq p q)..1 = p := !sup_path_W..1 definition pr2_path_W (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : (Wtype_eq p q)..2 =[pr1_path_W p q] q := !sup_path_W..2 definition eta_path_W (p : w = w') : Wtype_eq (p..1) (p..2) = p := by cases p; cases w; exact idp definition transport_pr1_path_W {B' : A → Type} (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : transport (λx, B' x.1) (Wtype_eq p q) = transport B' p := by cases w; cases w'; cases q; exact idp definition path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2) : w = w' := by cases pq with p q; exact (Wtype_eq p q) definition sup_path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2) : ⟨(path_W_uncurried pq)..1, (path_W_uncurried pq)..2⟩ = pq := by cases pq with p q; exact (sup_path_W p q) definition pr1_path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2) : (path_W_uncurried pq)..1 = pq.1 := !sup_path_W_uncurried..1 definition pr2_path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2) : (path_W_uncurried pq)..2 =[pr1_path_W_uncurried pq] pq.2 := !sup_path_W_uncurried..2 definition eta_path_W_uncurried (p : w = w') : path_W_uncurried ⟨p..1, p..2⟩ = p := !eta_path_W definition transport_pr1_path_W_uncurried {B' : A → Type} (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2) : transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) = transport B' pq.1 := by cases pq with p q; exact (transport_pr1_path_W p q) definition isequiv_path_W /-[instance]-/ (w w' : W a, B a) : is_equiv (path_W_uncurried : (Σ(p : w.1 = w'.1), w.2 =[p] w'.2) → w = w') := adjointify path_W_uncurried (λp, ⟨p..1, p..2⟩) eta_path_W_uncurried sup_path_W_uncurried definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 = w'.1), w.2 =[p] w'.2) ≃ (w = w') := equiv.mk path_W_uncurried !isequiv_path_W definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a) (H : ∀ (a a' : A) (f : B a → W a, B a) (f' : B a' → W a, B a), (∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' := begin revert w', induction w with a f IH, intro w', cases w' with a' f', apply H, intro b b', apply IH end /- truncatedness -/ open is_trunc pi definition is_trunc_W [instance] (n : trunc_index) [HA : is_trunc (n.+1) A] : is_trunc (n.+1) (W a, B a) := begin fapply is_trunc_succ_intro, intro w w', eapply (double_induction_on w w'), intro a a' f f' IH, fapply is_trunc_equiv_closed, { apply equiv_path_W}, { apply is_trunc_sigma, intro p, cases p, apply is_trunc_equiv_closed_rev n !pathover_idp, apply is_trunc_pi_eq, intro b, apply IH } end end Wtype