/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the circle -/ import .sphere import types.bool types.int.hott types.equiv import algebra.homotopy_group algebra.hott .connectedness open eq susp bool sphere_index is_equiv equiv is_trunc is_conn pi algebra definition circle : Type₀ := sphere 1 namespace circle notation `S¹` := circle definition base1 : circle := !north definition base2 : circle := !south definition seg1 : base1 = base2 := merid !north definition seg2 : base1 = base2 := merid !south definition base : circle := base1 definition loop : base = base := seg2 ⬝ seg1⁻¹ definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : circle) : P x := begin induction x with b, { exact Pb1}, { exact Pb2}, { esimp at *, induction b with y, { exact Ps1}, { exact Ps2}, { cases y}}, end definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : P x := circle.rec2 Pb1 Pb2 Ps1 Ps2 x theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := !rec_merid theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := !rec_merid definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P := rec2 Pb1 Pb2 (pathover_of_eq Ps1) (pathover_of_eq Ps2) x definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P := elim2 Pb1 Pb2 Ps1 Ps2 x theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg1), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim2,rec2_seg1], end theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg2), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim2,rec2_seg2], end definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type := elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : Type := elim2_type Pb1 Pb2 Ps1 Ps2 x theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) (x : circle) : P x := begin fapply (rec2_on x), { exact Pbase}, { exact (transport P seg1 Pbase)}, { apply pathover_tr}, { apply pathover_tr_of_pathover, exact Ploop} end protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base) (Ploop : Pbase =[loop] Pbase) : P x := circle.rec Pbase Ploop x theorem rec_loop_helper {A : Type} (P : A → Type) {x y z : A} {p : x = y} {p' : z = y} {u : P x} {v : P z} (q : u =[p ⬝ p'⁻¹] v) : pathover_tr_of_pathover q ⬝o !pathover_tr⁻¹ᵒ = q := by cases p'; cases q; exact idp definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p := eq.rec_on p idp theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) : apd (circle.rec Pbase Ploop) loop = Ploop := begin rewrite [↑loop,apd_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg2,apd_inv,rec2_seg1], apply rec_loop_helper end protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) (x : circle) : P := circle.rec Pbase (pathover_of_eq Ploop) x protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase) : P := circle.elim Pbase Ploop x theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) loop = Ploop := begin apply eq_of_fn_eq_fn_inv !(pathover_constant loop), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,rec_loop], end theorem elim_seg1 {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) seg1 = (tr_constant seg1 Pbase)⁻¹ := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg1), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,↑circle.rec], rewrite [↑circle.rec2_on,rec2_seg1], apply inverse, apply pathover_of_eq_tr_constant_inv end theorem elim_seg2 {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) seg2 = Ploop ⬝ (tr_constant seg1 Pbase)⁻¹ := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg2), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,↑circle.rec], rewrite [↑circle.rec2_on,rec2_seg2], assert l : Π(A B : Type)(a a₂ a₂' : A)(b b' : B)(p : a = a₂)(p' : a₂' = a₂) (q : b = b'), pathover_tr_of_pathover (pathover_of_eq q) = pathover_of_eq (q ⬝ (tr_constant p' b')⁻¹) :> b =[p] p' ▸ b', { intros, cases q, cases p', cases p, reflexivity }, apply l end protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase) (x : circle) : Type := circle.elim Pbase (ua Ploop) x protected definition elim_type_on [reducible] (x : circle) (Pbase : Type) (Ploop : Pbase ≃ Pbase) : Type := circle.elim_type Pbase Ploop x theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (circle.elim_type Pbase Ploop) loop = Ploop := by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,elim_loop];apply cast_ua_fn theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop := by rewrite [tr_inv_fn]; apply inv_eq_inv; apply elim_type_loop end circle attribute circle.base1 circle.base2 circle.base [constructor] attribute circle.rec2 circle.elim2 [unfold 6] [recursor 6] attribute circle.elim2_type [unfold 5] attribute circle.rec2_on circle.elim2_on [unfold 2] attribute circle.elim2_type [unfold 1] attribute circle.rec circle.elim [unfold 4] [recursor 4] attribute circle.elim_type [unfold 3] attribute circle.rec_on circle.elim_on [unfold 2] attribute circle.elim_type_on [unfold 1] namespace circle open sigma /- universal property of the circle -/ definition circle_pi_equiv [constructor] (P : S¹ → Type) : (Π(x : S¹), P x) ≃ Σ(p : P base), p =[loop] p := begin fapply equiv.MK, { intro f, exact ⟨f base, apd f loop⟩}, { intro v x, induction v with p q, induction x, { exact p}, { exact q}}, { intro v, induction v with p q, fapply sigma_eq, { reflexivity}, { esimp, apply pathover_idp_of_eq, apply rec_loop}}, { intro f, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover_dep, apply hdeg_squareover, esimp, apply rec_loop}} end definition circle_arrow_equiv [constructor] (P : Type) : (S¹ → P) ≃ Σ(p : P), p = p := begin fapply equiv.MK, { intro f, exact ⟨f base, ap f loop⟩}, { intro v x, induction v with p q, induction x, { exact p}, { exact q}}, { intro v, induction v with p q, fapply sigma_eq, { reflexivity}, { esimp, apply pathover_idp_of_eq, apply elim_loop}}, { intro f, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover, apply hdeg_square, esimp, apply elim_loop}} end definition pointed_circle [instance] [constructor] : pointed S¹ := pointed.mk base definition pcircle [constructor] : Type* := pointed.mk' S¹ notation `S¹.` := pcircle definition loop_neq_idp : loop ≠ idp := assume H : loop = idp, have H2 : Π{A : Type₁} {a : A} {p : a = a}, p = idp, from λA a p, calc p = ap (circle.elim a p) loop : elim_loop ... = ap (circle.elim a p) (refl base) : by rewrite H, eq_bnot_ne_idp H2 definition nonidp (x : circle) : x = x := begin induction x, { exact loop}, { apply concato_eq, apply pathover_eq_lr, rewrite [con.left_inv,idp_con]} end definition nonidp_neq_idp : nonidp ≠ (λx, idp) := assume H : nonidp = λx, idp, have H2 : loop = idp, from apd10 H base, absurd H2 loop_neq_idp open int protected definition code [unfold 1] (x : circle) : Type₀ := circle.elim_type_on x ℤ equiv_succ definition transport_code_loop (a : ℤ) : transport circle.code loop a = succ a := ap10 !elim_type_loop a definition transport_code_loop_inv (a : ℤ) : transport circle.code loop⁻¹ a = pred a := ap10 !elim_type_loop_inv a protected definition encode [unfold 2] {x : circle} (p : base = x) : circle.code x := transport circle.code p (of_num 0) protected definition decode [unfold 1] {x : circle} : circle.code x → base = x := begin induction x, { exact power loop}, { apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r, rewrite [power_con,transport_code_loop]} end definition circle_eq_equiv [constructor] (x : circle) : (base = x) ≃ circle.code x := begin fapply equiv.MK, { exact circle.encode}, { exact circle.decode}, { exact abstract [irreducible] begin induction x, { intro a, esimp, apply rec_nat_on a, { exact idp}, { intros n p, rewrite [↑circle.encode, -power_con, con_tr, transport_code_loop], exact ap succ p}, { intros n p, rewrite [↑circle.encode, nat_succ_eq_int_succ, neg_succ, -power_con_inv, @con_tr _ circle.code, transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ] }}, { apply pathover_of_tr_eq, apply eq_of_homotopy, intro a, apply @is_set.elim, esimp, exact _} end end}, { intro p, cases p, exact idp}, end definition base_eq_base_equiv [constructor] : base = base ≃ ℤ := circle_eq_equiv base definition decode_add (a b : ℤ) : circle.decode a ⬝ circle.decode b = circle.decode (a +[ℤ] b) := !power_con_power definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p +[ℤ] circle.encode q := preserve_binary_of_inv_preserve base_eq_base_equiv concat (@add ℤ _) decode_add p q --the carrier of π₁(S¹) is the set-truncation of base = base. open algebra trunc definition fg_carrier_equiv_int : π[1](S¹.) ≃ ℤ := trunc_equiv_trunc 0 base_eq_base_equiv ⬝e @(trunc_equiv 0 ℤ) proof _ qed definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p := eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm]) definition fundamental_group_of_circle : π₁(S¹.) = gℤ := begin apply (Group_eq fg_carrier_equiv_int), intros g h, induction g with g', induction h with h', apply encode_con, end open nat definition homotopy_group_of_circle (n : ℕ) : πg[n+1 +1] S¹. = G0 := begin refine @trivial_homotopy_add_of_is_set_loop_space S¹. 1 n _, apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv end definition eq_equiv_Z (x : S¹) : x = x ≃ ℤ := begin induction x, { apply base_eq_base_equiv}, { apply equiv_pathover, intro p p' q, apply pathover_of_eq, note H := eq_of_square (square_of_pathover q), rewrite con_comm_base at H, note H' := cancel_left _ H, induction H', reflexivity} end proposition is_trunc_circle [instance] : is_trunc 1 S¹ := begin apply is_trunc_succ_of_is_trunc_loop, { apply trunc_index.minus_one_le_succ}, { intro x, apply is_trunc_equiv_closed_rev, apply eq_equiv_Z} end proposition is_conn_circle [instance] : is_conn 0 circle := sphere.is_conn_sphere -1.+2 definition circle_turn [reducible] (x : S¹) : x = x := begin induction x, { exact loop }, { apply eq_pathover, apply square_of_eq, rewrite ap_id } end definition circle_mul [reducible] (x y : S¹) : S¹ := circle.elim y (circle_turn y) x definition circle_mul_base (x : S¹) : circle_mul x base = x := begin induction x, { reflexivity }, { apply eq_pathover, krewrite [elim_loop,ap_id], apply hrefl } end definition circle_base_mul [reducible] (x : S¹) : circle_mul base x = x := idp end circle