/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.binary Authors: Leonardo de Moura, Jeremy Avigad General properties of binary operations. -/ import algebra.function open eq.ops function namespace binary section variable {A : Type} variables (op₁ : A → A → A) (inv : A → A) (one : A) local notation a * b := op₁ a b local notation a ⁻¹ := inv a local notation 1 := one definition commutative [reducible] := ∀a b, a * b = b * a definition associative [reducible] := ∀a b c, (a * b) * c = a * (b * c) definition left_identity [reducible] := ∀a, 1 * a = a definition right_identity [reducible] := ∀a, a * 1 = a definition left_inverse [reducible] := ∀a, a⁻¹ * a = 1 definition right_inverse [reducible] := ∀a, a * a⁻¹ = 1 definition left_cancelative [reducible] := ∀a b c, a * b = a * c → b = c definition right_cancelative [reducible] := ∀a b c, a * b = c * b → a = c definition inv_op_cancel_left [reducible] := ∀a b, a⁻¹ * (a * b) = b definition op_inv_cancel_left [reducible] := ∀a b, a * (a⁻¹ * b) = b definition inv_op_cancel_right [reducible] := ∀a b, a * b⁻¹ * b = a definition op_inv_cancel_right [reducible] := ∀a b, a * b * b⁻¹ = a variable (op₂ : A → A → A) local notation a + b := op₂ a b definition left_distributive [reducible] := ∀a b c, a * (b + c) = a * b + a * c definition right_distributive [reducible] := ∀a b c, (a + b) * c = a * c + b * c definition right_commutative [reducible] {B : Type} (f : B → A → B) := ∀ b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁ definition left_commutative [reducible] {B : Type} (f : A → B → B) := ∀ a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b) end context variable {A : Type} variable {f : A → A → A} variable H_comm : commutative f variable H_assoc : associative f infixl `*` := f theorem left_comm : left_commutative f := take a b c, calc a*(b*c) = (a*b)*c : H_assoc ... = (b*a)*c : H_comm ... = b*(a*c) : H_assoc theorem right_comm : right_commutative f := take a b c, calc (a*b)*c = a*(b*c) : H_assoc ... = a*(c*b) : H_comm ... = (a*c)*b : H_assoc end context variable {A : Type} variable {f : A → A → A} variable H_assoc : associative f infixl `*` := f theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) := calc (a*b)*(c*d) = a*(b*(c*d)) : H_assoc ... = a*((b*c)*d) : H_assoc end definition right_commutative_compose_right [reducible] {A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) := λ a b₁ b₂, !rcomm definition left_commutative_compose_left [reducible] {A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) := λ a b₁ b₂, !lcomm end binary