import macros

definition Set (A : Type) : Type := A → Bool

definition element {A : Type} (x : A) (s : Set A) := s x
infix 60 ∈ : element

definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 → x ∈ s2
infix 50 ⊆ : subset

theorem subset_trans {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3
:= take x : A,
      assume Hin : x ∈ s1,
          have x ∈ s3 :
             let L1 : x ∈ s2 := H1 x Hin
             in H2 x L1

theorem subset_ext {A : Type} {s1 s2 : Set A} (H : ∀ x, x ∈ s1 = x ∈ s2) : s1 = s2
:= funext H

theorem subset_antisym {A : Type} {s1 s2 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1) :  s1 = s2
:= subset_ext (have (∀ x, x ∈ s1 = x ∈ s2) :
                   take x, have x ∈ s1 = x ∈ s2 :
                       iff_intro (have x ∈ s1 → x ∈ s2 : H1 x)
                                 (have x ∈ s2 → x ∈ s1 : H2 x))

exit

theorem subset_trans2 {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3
:= λ x Hin, H2 x (H1 x Hin)

theorem subset_antisym2 {A : Type} {s1 s2 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1) :  s1 = s2
:= funext (λ x, iff_intro (H1 x) (H2 x))