import standard
using tactic

definition my_tac1 := apply @refl
definition my_tac2 := repeat (apply @and_intro; assumption)

tactic_hint my_tac1
tactic_hint my_tac2

theorem T1 {A : Type.{2}} (a : A) : a = a
:= _

theorem T2 {a b c : Prop} (Ha : a) (Hb : b) (Hc : c) : a ∧ b ∧ c
:= _

definition my_tac3 := fixpoint (λ f, [apply @or_intro_left; f  |
                                      apply @or_intro_right; f |
                                      assumption])

tactic_hint [or] my_tac3

theorem T3 {a b c : Prop} (Hb : b) : a ∨ b ∨ c
:= _