-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura namespace function variables {A : Type} {B : Type} {C : Type} {D : Type} {E : Type} definition compose [reducible] (f : B → C) (g : A → B) : A → C := λx, f (g x) definition id [reducible] (a : A) : A := a definition on_fun (f : B → B → C) (g : A → B) : A → A → C := λx y, f (g x) (g y) definition combine (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E := λx y, op (f x y) (g x y) definition const {A : Type} (B : Type) (a : A) : B → A := λx, a definition dcompose {A : Type} {B : A → Type} {C : Π {x : A}, B x → Type} (f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) := λx, f (g x) definition flip {A : Type} {B : Type} {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y := λy x, f x y definition app {A : Type} {B : A → Type} (f : Πx, B x) (x : A) : B x := f x -- Yet another trick to anotate an expression with a type definition is_typeof (A : Type) (a : A) : A := a precedence `∘`:60 precedence `∘'`:60 precedence `on`:1 precedence `$`:1 infixr ∘ := compose infixr ∘' := dcompose infixl on := on_fun notation `typeof` t `:` T := is_typeof T t infixr $ := app notation f `-[` op `]-` g := combine f op g -- Trick for using any binary function as infix operator notation a `⟨` f `⟩` b := f a b end function