-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn, Leonardo de Moura import data.nat.basic data.empty data.prod open nat eq.ops prod inductive vector (T : Type) : ℕ → Type := nil {} : vector T 0, cons : T → ∀{n}, vector T n → vector T (succ n) namespace vector notation a :: b := cons a b notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l section sc_vector variable {T : Type} protected definition is_inhabited [instance] (A : Type) (H : inhabited A) (n : nat) : inhabited (vector A n) := nat.rec_on n (inhabited.mk nil) (λ (n : nat) (iH : inhabited (vector A n)), inhabited.destruct H (λa, inhabited.destruct iH (λv, inhabited.mk (a :: v)))) -- TODO(Leo): mark_it_private theorem case_zero_lem_aux {C : vector T 0 → Type} {n : ℕ} (v : vector T n) (Hnil : C nil) : ∀ H : n = 0, C (cast (congr_arg (vector T) H) v) := rec_on v (take H : 0 = 0, (eq.rec Hnil (cast_eq _ nil⁻¹))) (take (x : T) (n : ℕ) (w : vector T n) IH (H : succ n = 0), false.rec _ (absurd H !succ_ne_zero)) theorem z_cases_on {C : vector T 0 → Type} (v : vector T 0) (Hnil : C nil) : C v := eq.rec (case_zero_lem_aux v Hnil (eq.refl 0)) (cast_eq _ v) theorem vector0_eq_nil (v : vector T 0) : v = nil := z_cases_on v rfl definition cast_v {A : Type} {n n' : nat} (Heq : n = n') (v : vector A n) : vector A n' := eq.rec_on Heq v definition destruct {A : Type} {n : nat} (v : vector A (succ n)) {P : Π {n : nat}, vector A (succ n) → Type} (H : Π {n : nat} (h : A) (t : vector A n), P (h :: t)) : P v := have gen : ∀ Heq : succ n = succ n, P (cast_v Heq v), from cases_on v (λ Heq : zero = succ n, nat.no_confusion Heq) (λ (h' : A) (n' : nat) (t' : vector A n') (Heq : succ n' = succ n), have gen : ∀ Heq : succ n' = succ n', @P (pred (succ n')) (cast_v Heq (h' :: t')), from take Heq, H h' t', have e : n' = n, from nat.no_confusion Heq (λe, e), eq.rec_on e gen Heq), gen (eq.refl (succ n)) definition nz_cases_on := @destruct definition head {A : Type} {n : nat} (v : vector A (succ n)) : A := destruct v (λ n h t, h) definition tail {A : Type} {n : nat} (v : vector A (succ n)) : vector A n := destruct v (λ n h t, t) theorem eta {A : Type} {n : nat} (v : vector A (succ n)) : head v :: tail v = v := destruct v (λ n h t, rfl) theorem head_vcons {A : Type} {n : nat} (h : A) (t : vector A n) : head (h :: t) = h := rfl theorem tail_vcons {A : Type} {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t := rfl definition map {A B : Type} {n : nat} (f : A → B) (v : vector A n) : vector B n := nat.rec_on n (λ v, nil) (λ n₁ r v, f (head v) :: r (tail v)) v theorem map_vnil {A B : Type} {n : nat} (f : A → B) : map f nil = nil := rfl theorem map_vcons {A B : Type} {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t := rfl definition map2 {A B C : Type} {n : nat} (f : A → B → C) (v₁ : vector A n) (v₂ : vector B n) : vector C n := nat.rec_on n (λ v₁ v₂, nil) (λ n₁ r v₁ v₂, f (head v₁) (head v₂) :: r (tail v₁) (tail v₂)) v₁ v₂ theorem map2_vnil {A B C : Type} {n : nat} (f : A → B → C) : map2 f nil nil = nil := rfl theorem map2_vcons {A B C : Type} {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) : map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ := rfl definition append_core {A : Type} {n m : nat} (w : vector A m) (v : vector A n) : vector A (n + m) := rec_on w v (λ (a₁ : A) (m₁ : nat) (v₁ : vector A m₁) (r₁ : vector A (n + m₁)), a₁ :: r₁) theorem append_vnil {A : Type} {n : nat} (v : vector A n) : append_core nil v = v := rfl theorem append_vcons {A : Type} {n m : nat} (h : A) (t : vector A n) (v : vector A m) : append_core (h :: t) v = h :: (append_core t v) := rfl definition append {A : Type} {n m : nat} (w : vector A n) (v : vector A m) : vector A (n + m) := eq.rec_on !add.comm (append_core w v) example : append (1 :: 2 :: nil) (3 :: nil) = 1 :: 2 :: 3 :: nil := rfl section universe variables l₁ l₂ variable {A : Type.{l₁}} variable {C : Π (n : nat), vector A n → Type.{l₂+1}} definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), @below A C n v → C n v) : C n v := have general : C n v × @below A C n v, from rec_on v (pair (H zero nil unit.star) unit.star) (λ (a₁ : A) (n₁ : nat) (v₁ : vector A n₁) (r₁ : C n₁ v₁ × @below A C n₁ v₁), have b : @below A C _ (a₁ :: v₁), from r₁, have c : C (succ n₁) (a₁ :: v₁), from H (succ n₁) (a₁ :: v₁) b, pair c b), pr₁ general end -- STOPPED HERE private theorem rec_nonempty_lem {C : Π{n}, vector T (succ n) → Type} {n : ℕ} (v : vector T n) (Hone : Πa, C [a]) (Hcons : Πa {n} (v : vector T (succ n)), C v → C (a :: v)) : ∀{m} (H : n = succ m), C (cast (congr_arg (vector T) H) v) := cases_on v (take m (H : 0 = succ m), false.rec _ (absurd (H⁻¹) !succ_ne_zero)) (take x n v m H, have H2 : C (x::v), from sorry, -- rec_on v -- (Hone x) -- (take y n w IH, Hcons x (y::w)), show C (cast (congr_arg (vector T) H) (x::v)), from sorry ) theorem rec_nonempty {C : Π{n}, vector T (succ n) → Type} {n : ℕ} (v : vector T (succ n)) (Hone : Πa, C [a]) (Hcons : Πa {n} (v : vector T (succ n)), C v → C (a :: v)) : C v := sorry private theorem case_succ_lem {C : Π{n}, vector T (succ n) → Type} {n : ℕ} (v : vector T n) (H : Πa {n} (v : vector T n), C (a :: v)) : ∀{m} (H : n = succ m), C (cast (congr_arg (vector T) H) v) := sorry theorem case_succ {C : Π{n}, vector T (succ n) → Type} {n : ℕ} (v : vector T (succ n)) (H : Πa {n} (v : vector T n), C (a :: v)) : C v := sorry -- Concat -- ------ definition cast_subst {A : Type} {P : A → Type} {a a' : A} (H : a = a') (B : P a) : P a' := cast (congr_arg P H) B definition concat {n m : ℕ} (v : vector T n) (w : vector T m) : vector T (n + m) := vector.rec (cast_subst (!add.zero_left⁻¹) w) (λx n w' u, cast_subst (!add.succ_left⁻¹) (x::u)) v notation h ++ t := concat h t theorem nil_concat {n : ℕ} (v : vector T n) : nil ++ v = cast_subst (!add.zero_left⁻¹) v := rfl theorem cons_concat {n m : ℕ} (x : T) (v : vector T n) (w : vector T m) : (x :: v) ++ w = cast_subst (!add.succ_left⁻¹) (x::(v++w)) := rfl /- theorem cons_concat (x : T) (s t : list T) : (x :: s) ++ t = x :: (s ++ t) := refl _ theorem concat_nil (t : list T) : t ++ nil = t := list_induction_on t (refl _) (take (x : T) (l : list T) (H : concat l nil = l), show concat (cons x l) nil = cons x l, from H ▸ refl _) theorem concat_assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) := list_induction_on s (refl _) (take x l, assume H : concat (concat l t) u = concat l (concat t u), calc concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : refl _ ... = cons x (concat l (concat t u)) : { H } ... = concat (cons x l) (concat t u) : refl _) -/ -- Length -- ------ definition length {n : ℕ} (v : vector T n) := n theorem length_nil : length (@nil T) = 0 := rfl -- theorem length_cons (x : T) (t : list T) : length (x :: t) = succ (length t) := rfl -- theorem length_concat (s t : list T) : length (s ++ t) = length s + length t := -- list_induction_on s -- (calc -- length (concat nil t) = length t : rfl -- ... = zero + length t : {add_zero_left⁻¹} -- ... = length (@nil T) + length t : rfl) -- (take x s, -- assume H : length (concat s t) = length s + length t, -- calc -- length (concat (cons x s) t ) = succ (length (concat s t)) : rfl -- ... = succ (length s + length t) : { H } -- ... = succ (length s) + length t : {add_succ_left⁻¹} -- ... = length (cons x s) + length t : rfl) -- -- add_rewrite length_nil length_cons -- -- Append -- -- ------ -- definition append (x : T) : list T → list T := list_rec [x] (fun y l l', y :: l') -- theorem append_nil (x : T) : append x nil = [x] := refl _ -- theorem append_cons (x : T) (y : T) (l : list T) : append x (y :: l) = y :: (append x l) := refl _ -- theorem append_eq_concat (x : T) (l : list T) : append x l = l ++ [x] := refl _ -- -- add_rewrite append_nil append_cons -- -- Reverse -- -- ------- -- definition reverse : list T → list T := list_rec nil (fun x l r, r ++ [x]) -- theorem reverse_nil : reverse (@nil T) = nil := refl _ -- theorem reverse_cons (x : T) (l : list T) : reverse (x :: l) = append x (reverse l) := refl _ -- theorem reverse_singleton (x : T) : reverse [x] = [x] := refl _ -- theorem reverse_concat (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) := -- list_induction_on s (symm (concat_nil _)) -- (take x s, -- assume IH : reverse (s ++ t) = concat (reverse t) (reverse s), -- calc -- reverse ((x :: s) ++ t) = reverse (s ++ t) ++ [x] : refl _ -- ... = reverse t ++ reverse s ++ [x] : {IH} -- ... = reverse t ++ (reverse s ++ [x]) : concat_assoc _ _ _ -- ... = reverse t ++ (reverse (x :: s)) : refl _) -- theorem reverse_reverse (l : list T) : reverse (reverse l) = l := -- list_induction_on l (refl _) -- (take x l', -- assume H: reverse (reverse l') = l', -- show reverse (reverse (x :: l')) = x :: l', from -- calc -- reverse (reverse (x :: l')) = reverse (reverse l' ++ [x]) : refl _ -- ... = reverse [x] ++ reverse (reverse l') : reverse_concat _ _ -- ... = [x] ++ l' : { H } -- ... = x :: l' : refl _) -- theorem append_eq_reverse_cons (x : T) (l : list T) : append x l = reverse (x :: reverse l) := -- list_induction_on l (refl _) -- (take y l', -- assume H : append x l' = reverse (x :: reverse l'), -- calc -- append x (y :: l') = (y :: l') ++ [ x ] : append_eq_concat _ _ -- ... = concat (reverse (reverse (y :: l'))) [ x ] : {symm (reverse_reverse _)} -- ... = reverse (x :: (reverse (y :: l'))) : refl _) -- -- Head and tail -- -- ------------- -- theorem head_concat (s t : list T) (x0 : T) : s ≠ nil → (head x0 (s ++ t) = head x0 s) := -- list_cases_on s -- (take H : nil ≠ nil, absurd (refl nil) H) -- (take x s, -- take H : cons x s ≠ nil, -- calc -- head x0 (concat (cons x s) t) = head x0 (cons x (concat s t)) : {cons_concat _ _ _} -- ... = x : {head_cons _ _ _} -- ... = head x0 (cons x s) : {symm ( head_cons x x0 s)}) -- definition tail : list T → list T := list_rec nil (fun x l b, l) -- theorem tail_nil : tail (@nil T) = nil := refl _ -- theorem tail_cons (x : T) (l : list T) : tail (cons x l) = l := refl _ -- theorem cons_head_tail (x0 : T) (l : list T) : l ≠ nil → (head x0 l) :: (tail l) = l := -- list_cases_on l -- (assume H : nil ≠ nil, absurd (refl _) H) -- (take x l, assume H : cons x l ≠ nil, refl _) -- -- List membership -- -- --------------- -- definition mem (x : T) : list T → Prop := list_rec false (fun y l H, x = y ∨ H) -- infix `∈` := mem -- -- TODO: constructively, equality is stronger. Use that? -- theorem mem_nil (x : T) : x ∈ nil ↔ false := iff_refl _ -- theorem mem_cons (x : T) (y : T) (l : list T) : mem x (cons y l) ↔ (x = y ∨ mem x l) := iff_refl _ -- theorem mem_concat_imp_or (x : T) (s t : list T) : x ∈ s ++ t → x ∈ s ∨ x ∈ t := -- list_induction_on s or_inr -- (take y s, -- assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, -- assume H1 : x ∈ (y :: s) ++ t, -- have H2 : x = y ∨ x ∈ s ++ t, from H1, -- have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or_imp_or_right H2 IH, -- iff_elim_right or_assoc H3) -- theorem mem_or_imp_concat (x : T) (s t : list T) : x ∈ s ∨ x ∈ t → x ∈ s ++ t := -- list_induction_on s -- (take H, or_elim H (false_elim _) (assume H, H)) -- (take y s, -- assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, -- assume H : x ∈ y :: s ∨ x ∈ t, -- or_elim H -- (assume H1, -- or_elim H1 -- (take H2 : x = y, or_inl H2) -- (take H2 : x ∈ s, or_inr (IH (or_inl H2)))) -- (assume H1 : x ∈ t, or_inr (IH (or_inr H1)))) -- theorem mem_concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t -- := iff_intro (mem_concat_imp_or _ _ _) (mem_or_imp_concat _ _ _) -- theorem mem_split (x : T) (l : list T) : x ∈ l → ∃s t : list T, l = s ++ (x :: t) := -- list_induction_on l -- (take H : x ∈ nil, false_elim _ (iff_elim_left (mem_nil x) H)) -- (take y l, -- assume IH : x ∈ l → ∃s t : list T, l = s ++ (x :: t), -- assume H : x ∈ y :: l, -- or_elim H -- (assume H1 : x = y, -- exists_intro nil -- (exists_intro l (subst H1 (refl _)))) -- (assume H1 : x ∈ l, -- obtain s (H2 : ∃t : list T, l = s ++ (x :: t)), from IH H1, -- obtain t (H3 : l = s ++ (x :: t)), from H2, -- have H4 : y :: l = (y :: s) ++ (x :: t), -- from subst H3 (refl (y :: l)), -- exists_intro _ (exists_intro _ H4))) -- -- Find -- -- ---- -- -- to do this: need decidability of = for nat -- -- definition find (x : T) : list T → nat -- -- := list_rec 0 (fun y l b, if x = y then 0 else succ b) -- -- theorem find_nil (f : T) : find f nil = 0 -- -- :=refl _ -- -- theorem find_cons (x y : T) (l : list T) : find x (cons y l) = -- -- if x = y then 0 else succ (find x l) -- -- := refl _ -- -- theorem not_mem_find (l : list T) (x : T) : ¬ mem x l → find x l = length l -- -- := -- -- @list_induction_on T (λl, ¬ mem x l → find x l = length l) l -- -- -- list_induction_on l -- -- (assume P1 : ¬ mem x nil, -- -- show find x nil = length nil, from -- -- calc -- -- find x nil = 0 : find_nil _ -- -- ... = length nil : by simp) -- -- (take y l, -- -- assume IH : ¬ (mem x l) → find x l = length l, -- -- assume P1 : ¬ (mem x (cons y l)), -- -- have P2 : ¬ (mem x l ∨ (y = x)), from subst P1 (mem_cons _ _ _), -- -- have P3 : ¬ (mem x l) ∧ (y ≠ x),from subst P2 (not_or _ _), -- -- have P4 : x ≠ y, from ne_symm (and_elim_right P3), -- -- calc -- -- find x (cons y l) = succ (find x l) : -- -- trans (find_cons _ _ _) (not_imp_if_eq P4 _ _) -- -- ... = succ (length l) : {IH (and_elim_left P3)} -- -- ... = length (cons y l) : symm (length_cons _ _)) -- -- nth element -- -- ----------- -- definition nth (x0 : T) (l : list T) (n : ℕ) : T := -- nat_rec (λl, head x0 l) (λm f l, f (tail l)) n l -- theorem nth_zero (x0 : T) (l : list T) : nth x0 l 0 = head x0 l := refl _ -- theorem nth_succ (x0 : T) (l : list T) (n : ℕ) : nth x0 l (succ n) = nth x0 (tail l) n := refl _ end sc_vector notation a ++ b := concat a b end vector