import standard using num tactic prod inductive inh (A : Type) : Prop := | inh_intro : A -> inh A instance inh_intro theorem inh_elim {A : Type} {B : Prop} (H1 : inh A) (H2 : A → B) : B := inh_rec H2 H1 theorem inh_exists [instance] {A : Type} {P : A → Prop} (H : ∃x, P x) : inh A := obtain w Hw, from H, inh_intro w theorem inh_bool [instance] : inh Prop := inh_intro true theorem inh_fun [instance] {A B : Type} (H : inh B) : inh (A → B) := inh_rec (λb, inh_intro (λa : A, b)) H theorem pair_inh [instance] {A : Type} {B : Type} (H1 : inh A) (H2 : inh B) : inh (prod A B) := inh_elim H1 (λa, inh_elim H2 (λb, inh_intro (pair a b))) definition assump := eassumption tactic_hint assump theorem tst {A B : Type} (H : inh B) : inh (A → B → B) theorem T1 {A B C D : Type} {P : C → Prop} (a : A) (H1 : inh B) (H2 : ∃x, P x) : inh ((A → A) × B × (D → C) × Prop) (* print(get_env():find("T1"):value()) *)