(** -- import macros for, assume, mp, ... import("macros.lua") **) Definition Set (A : Type) : Type := A → Bool Definition element {A : Type} (x : A) (s : Set A) := s x Infix 60 ∈ : element Definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 ⇒ x ∈ s2 Infix 50 ⊆ : subset Theorem SubsetTrans (A : Type) : ∀ s1 s2 s3 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s3 ⇒ s1 ⊆ s3 := for s1 s2 s3, assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3), show s1 ⊆ s3, for x, assume Hin : x ∈ s1, show x ∈ s3, let L1 : x ∈ s2 := mp (instantiate H1 x) Hin in mp (instantiate H2 x) L1 Theorem SubsetExt (A : Type) : ∀ s1 s2 : Set A, (∀ x, x ∈ s1 = x ∈ s2) ⇒ s1 = s2 := for s1 s2, assume (H : ∀ x, x ∈ s1 = x ∈ s2), Abst (fun x, instantiate H x) Theorem SubsetAntiSymm (A : Type) : ∀ s1 s2 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s1 ⇒ s1 = s2 := for s1 s2, assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1), show s1 = s2, MP (show (∀ x, x ∈ s1 = x ∈ s2) ⇒ s1 = s2, instantiate (SubsetExt A) s1 s2) (show (∀ x, x ∈ s1 = x ∈ s2), for x, show x ∈ s1 = x ∈ s2, let L1 : x ∈ s1 ⇒ x ∈ s2 := instantiate H1 x, L2 : x ∈ s2 ⇒ x ∈ s1 := instantiate H2 x in ImpAntisym L1 L2) (* Compact (but less readable) version of the previous theorem *) Theorem SubsetAntiSymm2 (A : Type) : ∀ s1 s2 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s1 ⇒ s1 = s2 := for s1 s2, assume H1 H2, MP (instantiate (SubsetExt A) s1 s2) (for x, ImpAntisym (instantiate H1 x) (instantiate H2 x))