/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.fin Author: Leonardo de Moura Finite ordinals. -/ import data.nat open nat inductive fin : nat → Type := | fz : Π n, fin (succ n) | fs : Π {n}, fin n → fin (succ n) namespace fin definition to_nat : Π {n}, fin n → nat | ⌞n+1⌟ (fz n) := zero | ⌞n+1⌟ (fs f) := succ (to_nat f) theorem to_nat_fz (n : nat) : to_nat (fz n) = zero := rfl theorem to_nat_fs {n : nat} (f : fin n) : to_nat (fs f) = succ (to_nat f) := rfl theorem to_nat_lt : Π {n} (f : fin n), to_nat f < n | (n+1) (fz n) := calc to_nat (fz n) = 0 : rfl ... < n+1 : succ_pos n | (n+1) (fs f) := calc to_nat (fs f) = (to_nat f)+1 : rfl ... < n+1 : succ_lt_succ (to_nat_lt f) definition lift : Π {n : nat}, fin n → Π (m : nat), fin (m + n) | ⌞n+1⌟ (fz n) m := fz (m + n) | ⌞n+1⌟ (fs f) m := fs (lift f m) theorem lift_fz (n m : nat) : lift (fz n) m = fz (m + n) := rfl theorem lift_fs {n : nat} (f : fin n) (m : nat) : lift (fs f) m = fs (lift f m) := rfl theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m) | (n+1) (fz n) m := rfl | (n+1) (fs f) m := calc to_nat (fs f) = (to_nat f) + 1 : rfl ... = (to_nat (lift f m)) + 1 : to_nat_lift f ... = to_nat (lift (fs f) m) : rfl definition of_nat : Π (p : nat) (n : nat), p < n → fin n | 0 0 h := absurd h (not_lt_zero zero) | 0 (n+1) h := fz n | (p+1) 0 h := absurd h (not_lt_zero (succ p)) | (p+1) (n+1) h := fs (of_nat p n (lt_of_succ_lt_succ h)) theorem of_nat_zero_succ (n : nat) (h : 0 < n+1) : of_nat 0 (n+1) h = fz n := rfl theorem of_nat_succ_succ (p n : nat) (h : p+1 < n+1) : of_nat (p+1) (n+1) h = fs (of_nat p n (lt_of_succ_lt_succ h)) := rfl theorem to_nat_of_nat : ∀ (p : nat) (n : nat) (h : p < n), to_nat (of_nat p n h) = p | 0 0 h := absurd h (not_lt_zero 0) | 0 (n+1) h := rfl | (p+1) 0 h := absurd h (not_lt_zero (p+1)) | (p+1) (n+1) h := calc to_nat (of_nat (p+1) (n+1) h) = succ (to_nat (of_nat p n _)) : rfl ... = succ p : {to_nat_of_nat p n _} theorem of_nat_to_nat : ∀ {n : nat} (f : fin n) (h : to_nat f < n), of_nat (to_nat f) n h = f | (n+1) (fz n) h := rfl | (n+1) (fs f) h := calc of_nat (to_nat (fs f)) (succ n) h = fs (of_nat (to_nat f) n _) : rfl ... = fs f : {of_nat_to_nat f _} end fin