/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.groupoid Author: Jakob von Raumer Ported from Coq HoTT -/ import .precategory.morphism .group open eq is_trunc morphism category path_algebra nat unit namespace category structure groupoid [class] (ob : Type) extends parent : precategory ob := (all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob parent a b f) abbreviation all_iso := @groupoid.all_iso attribute groupoid.all_iso [instance] definition groupoid.mk' [reducible] (ob : Type) (C : precategory ob) (H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob := precategory.rec_on C groupoid.mk H definition groupoid_of_1_type.{l} (A : Type.{l}) [H : is_trunc (succ zero) A] : groupoid.{l l} A := groupoid.mk (λ (a b : A), a = b) (λ (a b : A), have ish : is_hset (a = b), from is_trunc_eq nat.zero a b, ish) (λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p) (λ (a : A), refl a) (λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p) (λ (a b : A) (p : a = b), con_idp p) (λ (a b : A) (p : a = b), idp_con p) (λ (a b : A) (p : a = b), @is_iso.mk A _ a b p (p⁻¹) !con.left_inv !con.right_inv) -- A groupoid with a contractible carrier is a group definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob] [G : groupoid ob] : group (hom (center ob) (center ob)) := begin fapply group.mk, intros (f, g), apply (comp f g), apply homH, intros (f, g, h), apply ((assoc f g h)⁻¹), apply (ID (center ob)), intro f, apply id_left, intro f, apply id_right, intro f, exact (morphism.inverse f), intro f, exact (morphism.inverse_compose f), end definition group_of_unit_groupoid [G : groupoid unit] : group (hom ⋆ ⋆) := begin fapply group.mk, intros (f, g), apply (comp f g), apply homH, intros (f, g, h), apply ((assoc f g h)⁻¹), apply (ID ⋆), intro f, apply id_left, intro f, apply id_right, intro f, exact (morphism.inverse f), intro f, exact (morphism.inverse_compose f), end -- Conversely we can turn each group into a groupoid on the unit type definition of_group.{l} (A : Type.{l}) [G : group A] : groupoid.{l l} unit := begin fapply groupoid.mk, intros, exact A, intros, apply (@group.carrier_hset A G), intros (a, b, c, g, h), exact (@group.mul A G g h), intro a, exact (@group.one A G), intros, exact ((@group.mul_assoc A G h g f)⁻¹), intros, exact (@group.one_mul A G f), intros, exact (@group.mul_one A G f), intros, apply is_iso.mk, apply mul_left_inv, apply mul_right_inv, end protected definition hom_group {A : Type} [G : groupoid A] (a : A) : group (hom a a) := begin fapply group.mk, intros (f, g), apply (comp f g), apply homH, intros (f, g, h), apply ((assoc f g h)⁻¹), apply (ID a), intro f, apply id_left, intro f, apply id_right, intro f, exact (morphism.inverse f), intro f, exact (morphism.inverse_compose f), end -- Bundled version of categories -- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C) structure Groupoid : Type := (carrier : Type) (struct : groupoid carrier) attribute Groupoid.struct [instance] [coercion] -- definition objects [reducible] := Category.objects -- definition category_instance [instance] [coercion] [reducible] := Category.category_instance definition Groupoid.to_Precategory [coercion] [reducible] (C : Groupoid) : Precategory := Precategory.mk (Groupoid.carrier C) C definition groupoid.Mk [reducible] := Groupoid.mk definition category.MK [reducible] (C : Precategory) (H : Π (a b : C) (f : a ⟶ b), is_iso f) : Groupoid := Groupoid.mk C (groupoid.mk' C C H) definition Groupoid.eta (C : Groupoid) : Groupoid.mk C C = C := Groupoid.rec (λob c, idp) C end category