/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Prime numbers. -/ import data.nat logic.identities open bool subtype namespace nat open decidable definition prime [reducible] (p : nat) := p ≥ 2 ∧ ∀ m, m ∣ p → m = 1 ∨ m = p definition prime_ext (p : nat) := p ≥ 2 ∧ ∀ m, m ≤ p → m ∣ p → m = 1 ∨ m = p local attribute prime_ext [reducible] lemma prime_ext_iff_prime (p : nat) : prime_ext p ↔ prime p := iff.intro begin intro h, cases h with h₁ h₂, constructor, assumption, intro m d, exact h₂ m (le_of_dvd (lt_of_succ_le (le_of_succ_le h₁)) d) d end begin intro h, cases h with h₁ h₂, constructor, assumption, intro m l d, exact h₂ m d end definition decidable_prime [instance] (p : nat) : decidable (prime p) := decidable_of_decidable_of_iff _ (prime_ext_iff_prime p) lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 := suppose prime p, obtain h₁ h₂, from this, h₁ theorem gt_one_of_prime {p : ℕ} (primep : prime p) : p > 1 := lt_of_succ_le (ge_two_of_prime primep) theorem pos_of_prime {p : ℕ} (primep : prime p) : p > 0 := lt.trans zero_lt_one (gt_one_of_prime primep) lemma not_prime_zero : ¬ prime 0 := λ h, absurd (ge_two_of_prime h) dec_trivial lemma not_prime_one : ¬ prime 1 := λ h, absurd (ge_two_of_prime h) dec_trivial lemma prime_two : prime 2 := dec_trivial lemma prime_three : prime 3 := dec_trivial lemma pred_prime_pos {p : nat} : prime p → pred p > 0 := suppose prime p, have p ≥ 2, from ge_two_of_prime this, show pred p > 0, from lt_of_succ_le (pred_le_pred this) lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p := assume h, succ_pred_of_pos (pos_of_prime h) lemma eq_one_or_eq_self_of_prime_of_dvd {p m : nat} : prime p → m ∣ p → m = 1 ∨ m = p := assume h d, obtain h₁ h₂, from h, h₂ m d lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i % p = 0 → 1 < i := assume ipp pos h, have p ≥ 2, from ge_two_of_prime ipp, have p ∣ i, from dvd_of_mod_eq_zero h, have p ≤ i, from le_of_dvd pos this, lt_of_succ_le (le.trans `2 ≤ p` this) definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≠ 1 ∧ m ≠ n} := assume h₁ h₂, have ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂, have ¬ n ≥ 2 ∨ ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from iff.mp !not_and_iff_not_or_not this, have ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from or_resolve_right this (not_not_intro h₁), have ¬ (∀ m, m < succ n → m ∣ n → m = 1 ∨ m = n), from assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) this, have {m | m < succ n ∧ ¬(m ∣ n → m = 1 ∨ m = n)}, from bsub_not_of_not_ball this, obtain m hlt (h₃ : ¬(m ∣ n → m = 1 ∨ m = n)), from this, obtain `m ∣ n` (h₅ : ¬ (m = 1 ∨ m = n)), from iff.mp !not_implies_iff_and_not h₃, have ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₅, subtype.tag m (and.intro `m ∣ n` this) theorem exists_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n := assume h₁ h₂, exists_of_subtype (sub_dvd_of_not_prime h₁ h₂) definition sub_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≥ 2 ∧ m < n} := assume h₁ h₂, have n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end, obtain m m_dvd_n m_ne_1 m_ne_n, from sub_dvd_of_not_prime h₁ h₂, assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) `n ≠ 0` end, begin existsi m, split, assumption, split, {cases m with m, exact absurd rfl m_ne_0, cases m with m, exact absurd rfl m_ne_1, exact succ_le_succ (succ_le_succ (zero_le _))}, {have m_le_n : m ≤ n, from le_of_dvd (pos_of_ne_zero `n ≠ 0`) m_dvd_n, exact lt_of_le_of_ne m_le_n m_ne_n} end theorem exists_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≥ 2 ∧ m < n := assume h₁ h₂, exists_of_subtype (sub_dvd_of_not_prime2 h₁ h₂) definition sub_prime_and_dvd {n : nat} : n ≥ 2 → {p | prime p ∧ p ∣ n} := nat.strong_rec_on n (take n, assume ih : ∀ m, m < n → m ≥ 2 → {p | prime p ∧ p ∣ m}, suppose n ≥ 2, by_cases (suppose prime n, subtype.tag n (and.intro this (dvd.refl n))) (suppose ¬ prime n, obtain m m_dvd_n m_ge_2 m_lt_n, from sub_dvd_of_not_prime2 `n ≥ 2` this, obtain p (hp : prime p) (p_dvd_m : p ∣ m), from ih m m_lt_n m_ge_2, have p ∣ n, from dvd.trans p_dvd_m m_dvd_n, subtype.tag p (and.intro hp this))) lemma exists_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p ∣ n := assume h, exists_of_subtype (sub_prime_and_dvd h) open eq.ops definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} := let m := fact (n + 1) in have m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)), have m + 1 ≥ 2, from succ_le_succ this, obtain p `prime p` `p ∣ m + 1`, from sub_prime_and_dvd this, have p ≥ 2, from ge_two_of_prime `prime p`, have p > 0, from lt_of_succ_lt (lt_of_succ_le `p ≥ 2`), have p ≥ n, from by_contradiction (suppose ¬ p ≥ n, have p < n, from lt_of_not_ge this, have p ≤ n + 1, from le_of_lt (lt.step this), have p ∣ m, from dvd_fact `p > 0` this, have p ∣ 1, from dvd_of_dvd_add_right (!add.comm ▸ `p ∣ m + 1`) this, have p ≤ 1, from le_of_dvd zero_lt_one this, show false, from absurd (le.trans `2 ≤ p` `p ≤ 1`) dec_trivial), subtype.tag p (and.intro this `prime p`) lemma exists_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p := exists_of_subtype (infinite_primes n) lemma odd_of_prime {p : nat} : prime p → p > 2 → odd p := λ pp p_gt_2, by_contradiction (λ hn, have even p, from even_of_not_odd hn, obtain k `p = 2*k`, from exists_of_even this, assert 2 ∣ p, by rewrite [`p = 2*k`]; apply dvd_mul_right, or.elim (eq_one_or_eq_self_of_prime_of_dvd pp this) (suppose 2 = 1, absurd this dec_trivial) (suppose 2 = p, by subst this; exact absurd p_gt_2 !lt.irrefl)) theorem dvd_of_prime_of_not_coprime {p n : ℕ} (primep : prime p) (nc : ¬ coprime p n) : p ∣ n := have H : gcd p n = 1 ∨ gcd p n = p, from eq_one_or_eq_self_of_prime_of_dvd primep !gcd_dvd_left, or_resolve_right H nc ▸ !gcd_dvd_right theorem coprime_of_prime_of_not_dvd {p n : ℕ} (primep : prime p) (npdvdn : ¬ p ∣ n) : coprime p n := by_contradiction (suppose ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep this)) theorem not_dvd_of_prime_of_coprime {p n : ℕ} (primep : prime p) (cop : coprime p n) : ¬ p ∣ n := suppose p ∣ n, have p ∣ gcd p n, from dvd_gcd !dvd.refl this, have p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) this, have 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ this), show false, from !not_succ_le_self this theorem not_coprime_of_prime_dvd {p n : ℕ} (primep : prime p) (pdvdn : p ∣ n) : ¬ coprime p n := assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn theorem dvd_of_prime_of_dvd_mul_left {p m n : ℕ} (primep : prime p) (Hmn : p ∣ m * n) (Hm : ¬ p ∣ m) : p ∣ n := have coprime p m, from coprime_of_prime_of_not_dvd primep Hm, show p ∣ n, from dvd_of_coprime_of_dvd_mul_left this Hmn theorem dvd_of_prime_of_dvd_mul_right {p m n : ℕ} (primep : prime p) (Hmn : p ∣ m * n) (Hn : ¬ p ∣ n) : p ∣ m := dvd_of_prime_of_dvd_mul_left primep (!mul.comm ▸ Hmn) Hn theorem not_dvd_mul_of_prime {p m n : ℕ} (primep : prime p) (Hm : ¬ p ∣ m) (Hn : ¬ p ∣ n) : ¬ p ∣ m * n := assume Hmn, Hm (dvd_of_prime_of_dvd_mul_right primep Hmn Hn) lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p ∣ m * n → p ∣ m ∨ p ∣ n := λ h₁ h₂, by_cases (suppose p ∣ m, or.inl this) (suppose ¬ p ∣ m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ this)) lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p ∣ m^n → p ∣ m | 0 hp hd := assert p = 1, from eq_one_of_dvd_one hd, have (1:nat) ≥ 2, begin rewrite -this at {1}, apply ge_two_of_prime hp end, absurd this dec_trivial | (succ n) hp hd := have p ∣ (m^n)*m, by rewrite [pow_succ' at hd]; exact hd, or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp this) (suppose p ∣ m^n, dvd_of_prime_of_dvd_pow hp this) (suppose p ∣ m, this) lemma coprime_pow_of_prime_of_not_dvd {p m a : nat} : prime p → ¬ p ∣ a → coprime a (p^m) := λ h₁ h₂, coprime_pow_right m (coprime_swap (coprime_of_prime_of_not_dvd h₁ h₂)) lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q := λ hp hq hn, assert gcd p q ∣ p, from !gcd_dvd_left, or.elim (eq_one_or_eq_self_of_prime_of_dvd hp this) (suppose gcd p q = 1, this) (assume h : gcd p q = p, assert gcd p q ∣ q, from !gcd_dvd_right, have p ∣ q, by rewrite -h; exact this, or.elim (eq_one_or_eq_self_of_prime_of_dvd hq this) (suppose p = 1, by subst p; exact absurd hp not_prime_one) (suppose p = q, by contradiction)) lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) := λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn)) lemma coprime_or_dvd_of_prime {p} (Pp : prime p) (i : nat) : coprime p i ∨ p ∣ i := by_cases (suppose p ∣ i, or.inr this) (suppose ¬ p ∣ i, or.inl (coprime_of_prime_of_not_dvd Pp this)) lemma eq_one_or_dvd_of_dvd_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i ∣ (p^m) → i = 1 ∨ p ∣ i | 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end | (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i) (λ Pcp, begin rewrite [pow_succ'], intro Pdvd, apply eq_one_or_dvd_of_dvd_prime_pow Pp, apply dvd_of_coprime_of_dvd_mul_right, apply coprime_swap Pcp, exact Pdvd end) (λ Pdvd, assume P, or.inr Pdvd) end nat