/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.quotient Authors: Floris van Doorn Declaration of set-quotients -/ import .type_quotient .trunc open eq is_trunc trunc type_quotient namespace quotient section parameters {A : Type} (R : A → A → hprop) -- set-quotients are just truncations of type-quotients definition quotient : Type := trunc 0 (type_quotient (λa a', trunctype.carrier (R a a'))) definition class_of (a : A) : quotient := tr (class_of _ a) definition eq_of_rel {a a' : A} (H : R a a') : class_of a = class_of a' := ap tr (eq_of_rel H) theorem is_hset_quotient : is_hset quotient := begin unfold quotient, exact _ end protected definition rec {P : quotient → Type} [Pt : Πaa, is_hset (P aa)] (Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), eq_of_rel H ▹ Pc a = Pc a') (x : quotient) : P x := begin apply (@trunc.rec_on _ _ P x), { intro x', apply Pt}, { intro y, fapply (type_quotient.rec_on y), { exact Pc}, { intros [a, a', H], apply concat, apply transport_compose;apply Pp}} end protected definition rec_on [reducible] {P : quotient → Type} (x : quotient) [Pt : Πaa, is_hset (P aa)] (Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), eq_of_rel H ▹ Pc a = Pc a') : P x := rec Pc Pp x definition rec_eq_of_rel {P : quotient → Type} [Pt : Πaa, is_hset (P aa)] (Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), eq_of_rel H ▹ Pc a = Pc a') {a a' : A} (H : R a a') : apD (rec Pc Pp) (eq_of_rel H) = sorry ⬝ Pp H ⬝ sorry := sorry protected definition elim {P : Type} [Pt : is_hset P] (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (x : quotient) : P := rec Pc (λa a' H, !tr_constant ⬝ Pp H) x protected definition elim_on [reducible] {P : Type} (x : quotient) [Pt : is_hset P] (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P := elim Pc Pp x protected definition elim_eq_of_rel {P : Type} [Pt : is_hset P] (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a') : ap (elim Pc Pp) (eq_of_rel H) = sorry ⬝ Pp H ⬝ sorry := sorry end end quotient