/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Bundled structures -/ import algebra.group homotopy.interval open algebra pointed is_trunc namespace algebra structure Semigroup := (carrier : Type) (struct : semigroup carrier) attribute Semigroup.carrier [coercion] attribute Semigroup.struct [instance] structure CommSemigroup := (carrier : Type) (struct : comm_semigroup carrier) attribute CommSemigroup.carrier [coercion] attribute CommSemigroup.struct [instance] structure Monoid := (carrier : Type) (struct : monoid carrier) attribute Monoid.carrier [coercion] attribute Monoid.struct [instance] structure CommMonoid := (carrier : Type) (struct : comm_monoid carrier) attribute CommMonoid.carrier [coercion] attribute CommMonoid.struct [instance] structure Group := (carrier : Type) (struct : group carrier) attribute Group.carrier [coercion] attribute Group.struct [instance] section local attribute Group.struct [instance] definition pSet_of_Group [constructor] [reducible] [coercion] (G : Group) : Set* := ptrunctype.mk G !semigroup.is_set_carrier 1 end attribute algebra._trans_of_pSet_of_Group [unfold 1] attribute algebra._trans_of_pSet_of_Group_1 algebra._trans_of_pSet_of_Group_2 [constructor] definition pType_of_Group [reducible] [constructor] : Group → Type* := algebra._trans_of_pSet_of_Group_1 definition Set_of_Group [reducible] [constructor] : Group → Set := algebra._trans_of_pSet_of_Group_2 definition AddGroup : Type := Group definition AddGroup.mk [constructor] [reducible] (G : Type) (H : add_group G) : AddGroup := Group.mk G H definition AddGroup.struct [reducible] (G : AddGroup) : add_group G := Group.struct G attribute AddGroup.struct Group.struct [instance] [priority 2000] structure AbGroup := (carrier : Type) (struct : ab_group carrier) attribute AbGroup.carrier [coercion] definition AddAbGroup : Type := AbGroup definition AddAbGroup.mk [constructor] [reducible] (G : Type) (H : add_ab_group G) : AddAbGroup := AbGroup.mk G H definition AddAbGroup.struct [reducible] (G : AddAbGroup) : add_ab_group G := AbGroup.struct G attribute AddAbGroup.struct AbGroup.struct [instance] [priority 2000] definition Group_of_AbGroup [coercion] [constructor] (G : AbGroup) : Group := Group.mk G _ attribute algebra._trans_of_Group_of_AbGroup_1 algebra._trans_of_Group_of_AbGroup algebra._trans_of_Group_of_AbGroup_3 [constructor] attribute algebra._trans_of_Group_of_AbGroup_2 [unfold 1] definition ab_group_AbGroup [instance] (G : AbGroup) : ab_group G := AbGroup.struct G definition add_ab_group_AddAbGroup [instance] (G : AddAbGroup) : add_ab_group G := AbGroup.struct G -- structure AddSemigroup := -- (carrier : Type) (struct : add_semigroup carrier) -- attribute AddSemigroup.carrier [coercion] -- attribute AddSemigroup.struct [instance] -- structure AddCommSemigroup := -- (carrier : Type) (struct : add_comm_semigroup carrier) -- attribute AddCommSemigroup.carrier [coercion] -- attribute AddCommSemigroup.struct [instance] -- structure AddMonoid := -- (carrier : Type) (struct : add_monoid carrier) -- attribute AddMonoid.carrier [coercion] -- attribute AddMonoid.struct [instance] -- structure AddCommMonoid := -- (carrier : Type) (struct : add_comm_monoid carrier) -- attribute AddCommMonoid.carrier [coercion] -- attribute AddCommMonoid.struct [instance] -- structure AddGroup := -- (carrier : Type) (struct : add_group carrier) -- attribute AddGroup.carrier [coercion] -- attribute AddGroup.struct [instance] -- structure AddAbGroup := -- (carrier : Type) (struct : add_ab_group carrier) -- attribute AddAbGroup.carrier [coercion] -- attribute AddAbGroup.struct [instance] -- some bundled infinity-structures structure InfGroup := (carrier : Type) (struct : inf_group carrier) attribute InfGroup.carrier [coercion] attribute InfGroup.struct [instance] section local attribute InfGroup.struct [instance] definition pType_of_InfGroup [constructor] [reducible] [coercion] (G : InfGroup) : Type* := pType.mk G 1 end attribute algebra._trans_of_pType_of_InfGroup [unfold 1] definition AddInfGroup : Type := InfGroup definition AddInfGroup.mk [constructor] [reducible] (G : Type) (H : add_inf_group G) : AddInfGroup := InfGroup.mk G H definition AddInfGroup.struct [reducible] (G : AddInfGroup) : add_inf_group G := InfGroup.struct G attribute AddInfGroup.struct InfGroup.struct [instance] [priority 2000] structure AbInfGroup := (carrier : Type) (struct : ab_inf_group carrier) attribute AbInfGroup.carrier [coercion] definition AddAbInfGroup : Type := AbInfGroup definition AddAbInfGroup.mk [constructor] [reducible] (G : Type) (H : add_ab_inf_group G) : AddAbInfGroup := AbInfGroup.mk G H definition AddAbInfGroup.struct [reducible] (G : AddAbInfGroup) : add_ab_inf_group G := AbInfGroup.struct G attribute AddAbInfGroup.struct AbInfGroup.struct [instance] [priority 2000] definition InfGroup_of_AbInfGroup [coercion] [constructor] (G : AbInfGroup) : InfGroup := InfGroup.mk G _ attribute algebra._trans_of_InfGroup_of_AbInfGroup_1 [constructor] attribute algebra._trans_of_InfGroup_of_AbInfGroup [unfold 1] definition InfGroup_of_Group [constructor] (G : Group) : InfGroup := InfGroup.mk G _ definition AddInfGroup_of_AddGroup [constructor] (G : AddGroup) : AddInfGroup := AddInfGroup.mk G _ definition AbInfGroup_of_AbGroup [constructor] (G : AbGroup) : AbInfGroup := AbInfGroup.mk G _ definition AddAbInfGroup_of_AddAbGroup [constructor] (G : AddAbGroup) : AddAbInfGroup := AddAbInfGroup.mk G _ end algebra