-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn -- category import logic.core.eq logic.core.connectives import data.unit data.sigma data.prod import struc.function inductive category (ob : Type) (mor : ob → ob → Type) : Type := mk : Π (comp : Π⦃A B C : ob⦄, mor B C → mor A B → mor A C) (id : Π {A : ob}, mor A A), (Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D}, comp h (comp g f) = comp (comp h g) f) → (Π {A B : ob} {f : mor A B}, comp f id = f) → (Π {A B : ob} {f : mor A B}, comp id f = f) → category ob mor class category namespace category precedence `∘` : 60 section parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor} abbreviation compose := rec (λ comp id assoc idr idl, comp) Cat abbreviation id := rec (λ comp id assoc idr idl, id) Cat abbreviation ID (A : ob) := @id A end infixr `∘` := compose section parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor} theorem assoc : Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D}, h ∘ (g ∘ f) = (h ∘ g) ∘ f := rec (λ comp id assoc idr idl, assoc) Cat theorem id_right : Π {A B : ob} {f : mor A B}, f ∘ id = f := rec (λ comp id assoc idr idl, idr) Cat theorem id_left : Π {A B : ob} {f : mor A B}, id ∘ f = f := rec (λ comp id assoc idr idl, idl) Cat theorem left_id_unique {A : ob} (i : mor A A) (H : Π{B} {f : mor B A}, i ∘ f = f) : i = id := calc i = i ∘ id : eq.symm id_right ... = id : H theorem right_id_unique {A : ob} (i : mor A A) (H : Π{B} {f : mor A B}, f ∘ i = f) : i = id := calc i = id ∘ i : eq.symm id_left ... = id : H definition has_left_inverse {A B : ob} (f : mor A B) : Type := including Cat, Σ g, g ∘ f = id definition left_inverse {A B : ob} (f : mor A B) (H : has_left_inverse f) : mor B A := sigma.dpr1 H definition has_right_inverse {A B : ob} (f : mor A B) : Type := including Cat, Σ g, f ∘ g = id definition right_inverse {A B : ob} (f : mor A B) (H : has_right_inverse f) : mor B A := sigma.dpr1 H definition iso {A B : ob} (f : mor A B) : Type := including Cat, Σ g, f ∘ g = id ∧ g ∘ f = id definition inverse {A B : ob} (f : mor A B) (H : iso f) : mor B A := sigma.dpr1 H theorem iso_imp_left_inverse {A B : ob} (f : mor A B) (H : iso f) : has_left_inverse f := sorry theorem iso_imp_right_inverse {A B : ob} (f : mor A B) (H : iso f) : has_left_inverse f := sorry theorem left_right_inverse_imp_iso {A B : ob} (f : mor A B) (Hl : has_left_inverse f) (Hr : has_right_inverse f) : iso f := sorry postfix `⁻¹` := inverse set_option pp.implicit true -- theorem foo {A B : ob} {f : mor A B} (H : iso f) : true := -- including Cat, (λx (y : iso f),x) _ H theorem compose_inverse {A B : ob} {f : mor A B} (H : iso f) : f ∘ f⁻¹ H = id := and.elim_left (sigma.dpr2 H) theorem inverse_compose {A B : ob} {f : mor A B} (H : iso f) : f⁻¹ H ∘ f = id := and.elim_right (sigma.dpr2 H) theorem inverse_unique {A B : ob} {f : mor A B} (H H' : iso f) : f⁻¹ H = f⁻¹ H' := sorry -- calc -- inverse f H = f⁻¹ H ∘ id : symm id.right -- ... = f⁻¹ H ∘ f ∘ f⁻¹ H' : {symm (compose_inverse H')} -- ... = (f⁻¹ H ∘ f) ∘ f⁻¹ H' : assoc -- ... = id ∘ f⁻¹ H' : {inverse_compose H} -- ... = f⁻¹ H' : id.left definition mono {A B : ob} (f : mor A B) : Prop := including Cat, ∀⦃C⦄ {g h : mor C A}, f ∘ g = f ∘ h → g = h definition epi {A B : ob} (f : mor A B) : Prop := including Cat, ∀⦃C⦄ {g h : mor B C}, g ∘ f = h ∘ f → g = h end postfix `⁻¹` := inverse section parameters {obC obD : Type} {morC : obC → obC → Type} {morD : obD → obD → Type} parameters (C : category obC morC) parameters (D : category obD morD) definition tst (a b c : obC) (m1 : morC a b) (m2 : morC b c) := (λx y, x) (compose m2 m1) (including C, false) definition tst2 (C : category obC morC) (a b c : obC) (m1 : morC a b) (m2 : morC b c) := compose m2 m1 parameter a : obC parameter f : morC a a -- inductive foo : Type := -- mk : including C, foo -- inductive functor : Type := -- functor.mk : including C D, -- Π (obF : obC → obD) (morF : Π{A B}, morC A B → morD (obF A) (obF B)), -- (Π {A : obC}, morF (ID A) = ID (obF A)) → -- (Π {A B C : obC} {f : morC A B} {g : morC B C}, morF (g ∘ f) = morF g ∘ morF f) → -- functor end section open unit definition one [instance] : category unit (λa b, unit) := category.mk (λ a b c f g, star) (λ a, star) (λ a b c d f g h, unit.equal _ _) (λ a b f, unit.equal _ _) (λ a b f, unit.equal _ _) end section --need extensionality definition type_cat : category Type (λA B, A → B) := mk (λ a b c f g, function.compose f g) (λ a, function.id) (λ a b c d f g h, sorry) (λ a b f, sorry) (λ a b f, sorry) end end category