/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Calculating homotopy groups of spheres. In this file we calculate π₂(S²) = Z πₙ(S²) = πₙ(S³) for n > 2 πₙ(Sⁿ) = Z for n > 0 π₂(S³) = Z -/ import .homotopy_group .freudenthal open eq group algebra is_equiv equiv fin prod chain_complex pointed fiber nat is_trunc trunc_index sphere.ops trunc is_conn susp namespace sphere /- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/ open sphere sphere.ops int circle hopf definition π2S2 : πg[1+1] (S* 2) ≃g gℤ := begin refine _ ⬝g fundamental_group_of_circle, refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_phopf, fapply isomorphism_of_equiv, { fapply equiv.mk, { exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)}, { refine @is_equiv_of_trivial _ _ _ (is_exact_LES_of_homotopy_groups _ (1, 1)) (is_exact_LES_of_homotopy_groups _ (1, 2)) _ _ (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) _, { rewrite [LES_of_homotopy_groups_1, ▸*], have H : 1 ≤[ℕ] 2, from !one_le_succ, apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3}, { refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x)) (LES_of_homotopy_groups_1 complex_phopf 2) _, apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}}}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))} end open circle definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S* 3) ≃g πg[n+2 +1] (S* 2) := begin fapply isomorphism_of_equiv, { fapply equiv.mk, { exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)}, { have H : is_trunc 1 (pfiber complex_phopf), from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle, refine @is_equiv_of_trivial _ _ _ (is_exact_LES_of_homotopy_groups _ (n+2, 2)) (is_exact_LES_of_homotopy_groups _ (n+3, 0)) _ _ (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) _, { rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[ℕ] 2)], have H2 : 1 ≤[ℕ] n + 1, from !one_le_succ, exact @trivial_ghomotopy_group_of_is_trunc _ _ _ H H2}, { refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x)) (LES_of_homotopy_groups_2 complex_phopf _) _, have H2 : 1 ≤[ℕ] n + 2, from !one_le_succ, apply trivial_ghomotopy_group_of_is_trunc _ _ _ H2}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))} end definition sphere_stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) : π[k + 1] (S* (n+1)) ≃* π[k] (S* n) := begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_pequiv empty H end definition stability_isomorphism (k n : ℕ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S* (n+1)) ≃g πg[k+1] (S* n) := begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_isomorphism empty H end open int circle hopf definition πnSn (n : ℕ) : πg[n+1] (S* (succ n)) ≃g gℤ := begin cases n with n IH, { exact fundamental_group_of_circle}, { induction n with n IH, { exact π2S2}, { refine _ ⬝g IH, apply stability_isomorphism, rexact add_mul_le_mul_add n 1 2}} end theorem not_is_trunc_sphere (n : ℕ) : ¬is_trunc n (S* (succ n)) := begin intro H, note H2 := trivial_ghomotopy_group_of_is_trunc (S* (succ n)) n n !le.refl, have H3 : is_contr ℤ, from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)), have H4 : (0 : ℤ) ≠ (1 : ℤ), from dec_star, apply H4, apply is_prop.elim, end section open sphere_index definition not_is_trunc_sphere' (n : ℕ₋₁) : ¬is_trunc n (S (n.+1)) := begin cases n with n, { esimp [sphere.ops.S, sphere], intro H, have H2 : is_prop bool, from @(is_trunc_equiv_closed -1 sphere_equiv_bool) H, have H3 : bool.tt ≠ bool.ff, from dec_star, apply H3, apply is_prop.elim}, { intro H, apply not_is_trunc_sphere (add_one n), rewrite [▸*, trunc_index_of_nat_add_one, -add_one_succ, sphere_index_of_nat_add_one], exact H} end end definition π3S2 : πg[2+1] (S* 2) ≃g gℤ := (πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2 end sphere