/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "normalizer.h" #include "expr.h" #include "context.h" #include "environment.h" #include "scoped_map.h" #include "builtin.h" #include "free_vars.h" #include "list.h" #include "flet.h" #include "buffer.h" #include "kernel_exception.h" #include "options.h" #ifndef LEAN_KERNEL_NORMALIZER_MAX_DEPTH #define LEAN_KERNEL_NORMALIZER_MAX_DEPTH std::numeric_limits::max() #endif namespace lean { static name g_kernel_normalizer_max_depth {"kernel", "normalizer", "max_depth"}; RegisterUnsignedOption(g_kernel_normalizer_max_depth, LEAN_KERNEL_NORMALIZER_MAX_DEPTH, "(kernel) maximum recursion depth for expression normalizer"); unsigned get_normalizer_max_depth(options const & opts) { return opts.get_unsigned(g_kernel_normalizer_max_depth, LEAN_KERNEL_NORMALIZER_MAX_DEPTH); } class svalue; typedef list value_stack; //!< Normalization stack enum class svalue_kind { Expr, Closure, BoundedVar }; /** \brief Stack value: simple expressions, closures and bounded variables. */ class svalue { svalue_kind m_kind; unsigned m_bvar; expr m_expr; value_stack m_ctx; public: svalue() {} explicit svalue(expr const & e): m_kind(svalue_kind::Expr), m_expr(e) {} explicit svalue(unsigned k): m_kind(svalue_kind::BoundedVar), m_bvar(k) {} svalue(expr const & e, value_stack const & c):m_kind(svalue_kind::Closure), m_expr(e), m_ctx(c) { lean_assert(is_lambda(e)); } svalue_kind kind() const { return m_kind; } bool is_expr() const { return kind() == svalue_kind::Expr; } bool is_closure() const { return kind() == svalue_kind::Closure; } bool is_bounded_var() const { return kind() == svalue_kind::BoundedVar; } expr const & get_expr() const { lean_assert(is_expr() || is_closure()); return m_expr; } value_stack const & get_ctx() const { lean_assert(is_closure()); return m_ctx; } unsigned get_var_idx() const { lean_assert(is_bounded_var()); return m_bvar; } }; svalue_kind kind(svalue const & v) { return v.kind(); } expr const & to_expr(svalue const & v) { return v.get_expr(); } value_stack const & stack_of(svalue const & v) { return v.get_ctx(); } unsigned to_bvar(svalue const & v) { return v.get_var_idx(); } value_stack extend(value_stack const & s, svalue const & v) { return cons(v, s); } /** \brief Expression normalizer. */ class normalizer::imp { typedef scoped_map cache; environment const & m_env; context m_ctx; cache m_cache; unsigned m_max_depth; unsigned m_depth; volatile bool m_interrupted; /** \brief Auxiliary object for saving the current context. We need this to be able to process values in the context. */ struct save_context { imp & m_imp; context m_old_ctx; save_context(imp & imp):m_imp(imp), m_old_ctx(m_imp.m_ctx) { m_imp.m_cache.clear(); } ~save_context() { m_imp.m_ctx = m_old_ctx; } }; svalue lookup(value_stack const & s, unsigned i, unsigned k) { unsigned j = i; value_stack const * it1 = &s; while (*it1) { if (j == 0) return head(*it1); --j; it1 = &tail(*it1); } auto p = lookup_ext(m_ctx, j); context_entry const & entry = p.first; context const & entry_c = p.second; if (entry.get_body()) { save_context save(*this); // it restores the context and cache m_ctx = entry_c; unsigned k = length(m_ctx); return svalue(reify(normalize(entry.get_body(), value_stack(), k), k)); } else { return svalue(length(entry_c)); } } /** \brief Convert the closure \c a into an expression using the given stack in a context that contains \c k binders. */ expr reify_closure(expr const & a, value_stack const & s, unsigned k) { lean_assert(is_lambda(a)); expr new_t = reify(normalize(abst_domain(a), s, k), k); expr new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1); return mk_lambda(abst_name(a), new_t, new_b); } /** \brief Convert the value \c v back into an expression in a context that contains \c k binders. */ expr reify(svalue const & v, unsigned k) { switch (v.kind()) { case svalue_kind::Expr: return to_expr(v); case svalue_kind::BoundedVar: return mk_var(k - to_bvar(v) - 1); case svalue_kind::Closure: return reify_closure(to_expr(v), stack_of(v), k); } lean_unreachable(); return expr(); } /** \brief Normalize the expression \c a in a context composed of stack \c s and \c k binders. */ svalue normalize(expr const & a, value_stack const & s, unsigned k) { flet l(m_depth, m_depth+1); check_interrupted(m_interrupted); if (m_depth > m_max_depth) throw kernel_exception(m_env, "normalizer maximum recursion depth exceeded"); bool shared = false; if (is_shared(a)) { shared = true; auto it = m_cache.find(a); if (it != m_cache.end()) return it->second; } svalue r; switch (a.kind()) { case expr_kind::Var: r = lookup(s, var_idx(a), k); break; case expr_kind::Constant: { object const & obj = m_env.get_object(const_name(a)); if (obj.is_definition() && !obj.is_opaque()) { r = normalize(obj.get_value(), value_stack(), 0); } else { r = svalue(a); } break; } case expr_kind::Type: case expr_kind::Value: r = svalue(a); break; case expr_kind::App: { svalue f = normalize(arg(a, 0), s, k); unsigned i = 1; unsigned n = num_args(a); while (true) { if (f.is_closure()) { // beta reduction expr const & fv = to_expr(f); { cache::mk_scope sc(m_cache); value_stack new_s = extend(stack_of(f), normalize(arg(a, i), s, k)); f = normalize(abst_body(fv), new_s, k); } if (i == n - 1) { r = f; break; } i++; } else { buffer new_args; expr new_f = reify(f, k); new_args.push_back(new_f); for (; i < n; i++) new_args.push_back(reify(normalize(arg(a, i), s, k), k)); if (is_value(new_f)) { expr m; if (to_value(new_f).normalize(new_args.size(), new_args.data(), m)) { r = normalize(m, s, k); break; } } r = svalue(mk_app(new_args.size(), new_args.data())); break; } } break; } case expr_kind::Eq: { expr new_lhs = reify(normalize(eq_lhs(a), s, k), k); expr new_rhs = reify(normalize(eq_rhs(a), s, k), k); if (new_lhs == new_rhs) { r = svalue(mk_bool_value(true)); } else if (is_value(new_lhs) && is_value(new_rhs)) { r = svalue(mk_bool_value(false)); } else { r = svalue(mk_eq(new_lhs, new_rhs)); } break; } case expr_kind::Lambda: r = svalue(a, s); break; case expr_kind::Pi: { expr new_t = reify(normalize(abst_domain(a), s, k), k); expr new_b; { cache::mk_scope sc(m_cache); new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1); } r = svalue(mk_pi(abst_name(a), new_t, new_b)); break; } case expr_kind::Let: { svalue v = normalize(let_value(a), s, k); { cache::mk_scope sc(m_cache); r = normalize(let_body(a), extend(s, v), k+1); } break; }} if (shared) { m_cache.insert(a, r); } return r; } bool is_convertible_core(expr const & expected, expr const & given) { if (expected == given) { return true; } else { expr const * e = &expected; expr const * g = &given; while (true) { if (is_type(*e) && is_type(*g)) { if (m_env.is_ge(ty_level(*e), ty_level(*g))) return true; } if (is_type(*e) && *g == mk_bool_type()) return true; if (is_pi(*e) && is_pi(*g) && abst_domain(*e) == abst_domain(*g)) { e = &abst_body(*e); g = &abst_body(*g); } else { return false; } } } } void set_ctx(context const & ctx) { if (!is_eqp(ctx, m_ctx)) { m_ctx = ctx; m_cache.clear(); } } public: imp(environment const & env, unsigned max_depth): m_env(env) { m_interrupted = false; m_max_depth = max_depth; m_depth = 0; } expr operator()(expr const & e, context const & ctx) { set_ctx(ctx); unsigned k = length(m_ctx); return reify(normalize(e, value_stack(), k), k); } bool is_convertible(expr const & expected, expr const & given, context const & ctx) { if (is_convertible_core(expected, given)) return true; set_ctx(ctx); unsigned k = length(m_ctx); expr e_n = reify(normalize(expected, value_stack(), k), k); expr g_n = reify(normalize(given, value_stack(), k), k); return is_convertible_core(e_n, g_n); } void clear() { m_ctx = context(); m_cache.clear(); } void set_interrupt(bool flag) { m_interrupted = flag; } }; normalizer::normalizer(environment const & env, unsigned max_depth):m_ptr(new imp(env, max_depth)) {} normalizer::normalizer(environment const & env):normalizer(env, std::numeric_limits::max()) {} normalizer::normalizer(environment const & env, options const & opts):normalizer(env, get_normalizer_max_depth(opts)) {} normalizer::~normalizer() {} expr normalizer::operator()(expr const & e, context const & ctx) { return (*m_ptr)(e, ctx); } bool normalizer::is_convertible(expr const & t1, expr const & t2, context const & ctx) { return m_ptr->is_convertible(t1, t2, ctx); } void normalizer::clear() { m_ptr->clear(); } void normalizer::set_interrupt(bool flag) { m_ptr->set_interrupt(flag); } expr normalize(expr const & e, environment const & env, context const & ctx) { return normalizer(env)(e, ctx); } bool is_convertible(expr const & expected, expr const & given, environment const & env, context const & ctx) { return normalizer(env).is_convertible(expected, given, ctx); } } /* Remark: Eta-reduction + Cumulativity + Set theoretic interpretation is unsound. Example: f : (Type 2) -> (Type 2) (fun (x : (Type 1)) (f x)) : (Type 1) -> (Type 2) The domains of these two terms are different. So, they must have different denotations. However, by eta-reduction, we have: (fun (x : (Type 1)) (f x)) == f For now, we will disable it. REMARK: we can workaround this problem by applying only when the domain of f is equal to the domain of the lambda abstraction. Cody Roux suggested we use Eta-expanded normal forms. Remark: The source code for eta-reduction can be found in the commit 519a290f320c6a */