/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Colimits in a category -/ import .limits ..constructions.opposite open is_trunc functor nat_trans eq -- we define colimits to be the dual of a limit namespace category variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory) include C definition is_initial [reducible] (c : ob) := @is_terminal _ (opposite C) c definition is_contr_of_is_initial (c d : ob) [H : is_initial d] : is_contr (d ⟶ c) := H c local attribute is_contr_of_is_initial [instance] definition initial_morphism (c c' : ob) [H : is_initial c'] : c' ⟶ c := !center definition hom_initial_eq [H : is_initial c'] (f f' : c' ⟶ c) : f = f' := !is_prop.elim definition eq_initial_morphism [H : is_initial c'] (f : c' ⟶ c) : f = initial_morphism c c' := !is_prop.elim definition initial_iso_initial {c c' : ob} (H : is_initial c) (K : is_initial c') : c ≅ c' := iso_of_opposite_iso (@terminal_iso_terminal _ (opposite C) _ _ H K) theorem is_prop_is_initial [instance] : is_prop (is_initial c) := _ omit C definition has_initial_object [reducible] : Type := has_terminal_object Dᵒᵖ definition initial_object [unfold 2] [reducible] [H : has_initial_object D] : D := has_terminal_object.d Dᵒᵖ definition has_initial_object.is_initial [H : has_initial_object D] : is_initial (initial_object D) := @has_terminal_object.is_terminal (Opposite D) H variable {D} definition initial_object_iso_initial_object (H₁ H₂ : has_initial_object D) : @initial_object D H₁ ≅ @initial_object D H₂ := initial_iso_initial (@has_initial_object.is_initial D H₁) (@has_initial_object.is_initial D H₂) set_option pp.coercions true theorem is_prop_has_initial_object [instance] (D : Category) : is_prop (has_initial_object D) := is_prop_has_terminal_object (Category_opposite D) variable (D) abbreviation has_colimits_of_shape := has_limits_of_shape Dᵒᵖ Iᵒᵖ /- The next definitions states that a category is cocomplete with respect to diagrams in a certain universe. "is_cocomplete.{o₁ h₁ o₂ h₂}" means that D is cocomplete with respect to diagrams of type Precategory.{o₂ h₂} -/ abbreviation is_cocomplete (D : Precategory) := is_complete Dᵒᵖ definition has_colimits_of_shape_of_is_cocomplete [instance] [H : is_cocomplete D] (I : Precategory) : has_colimits_of_shape D I := H Iᵒᵖ section open pi theorem is_prop_has_colimits_of_shape [instance] (D : Category) (I : Precategory) : is_prop (has_colimits_of_shape D I) := is_prop_has_limits_of_shape (Category_opposite D) _ theorem is_prop_is_cocomplete [instance] (D : Category) : is_prop (is_cocomplete D) := is_prop_is_complete (Category_opposite D) end variables {D I} (F : I ⇒ D) [H : has_colimits_of_shape D I] {i j : I} include H abbreviation cocone := (cone Fᵒᵖᶠ)ᵒᵖ definition has_initial_object_cocone [H : has_colimits_of_shape D I] (F : I ⇒ D) : has_initial_object (cocone F) := begin unfold [has_colimits_of_shape,has_limits_of_shape] at H, exact H Fᵒᵖᶠ end local attribute has_initial_object_cocone [instance] definition colimit_cocone : cocone F := limit_cone Fᵒᵖᶠ definition is_initial_colimit_cocone [instance] : is_initial (colimit_cocone F) := is_terminal_limit_cone Fᵒᵖᶠ definition colimit_object : D := limit_object Fᵒᵖᶠ definition colimit_nat_trans : constant_functor Iᵒᵖ (colimit_object F) ⟹ Fᵒᵖᶠ := limit_nat_trans Fᵒᵖᶠ definition colimit_morphism (i : I) : F i ⟶ colimit_object F := limit_morphism Fᵒᵖᶠ i variable {H} theorem colimit_commute {i j : I} (f : i ⟶ j) : colimit_morphism F j ∘ to_fun_hom F f = colimit_morphism F i := by rexact limit_commute Fᵒᵖᶠ f variable [H] definition colimit_cone_obj [constructor] {d : D} {η : Πi, F i ⟶ d} (p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : cone_obj Fᵒᵖᶠ := limit_cone_obj Fᵒᵖᶠ proof p qed variable {H} definition colimit_hom {d : D} (η : Πi, F i ⟶ d) (p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : colimit_object F ⟶ d := hom_limit Fᵒᵖᶠ η proof p qed theorem colimit_hom_commute {d : D} (η : Πi, F i ⟶ d) (p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) (i : I) : colimit_hom F η p ∘ colimit_morphism F i = η i := by rexact hom_limit_commute Fᵒᵖᶠ η proof p qed i definition colimit_cone_hom [constructor] {d : D} {η : Πi, F i ⟶ d} (p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d} (q : Πi, h ∘ colimit_morphism F i = η i) : cone_hom (colimit_cone_obj F p) (colimit_cocone F) := by rexact limit_cone_hom Fᵒᵖᶠ proof p qed proof q qed variable {F} theorem eq_colimit_hom {d : D} {η : Πi, F i ⟶ d} (p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d} (q : Πi, h ∘ colimit_morphism F i = η i) : h = colimit_hom F η p := by rexact @eq_hom_limit _ _ Fᵒᵖᶠ _ _ _ proof p qed _ proof q qed theorem colimit_cocone_unique {d : D} {η : Πi, F i ⟶ d} (p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h₁ : colimit_object F ⟶ d} (q₁ : Πi, h₁ ∘ colimit_morphism F i = η i) {h₂ : colimit_object F ⟶ d} (q₂ : Πi, h₂ ∘ colimit_morphism F i = η i) : h₁ = h₂ := @limit_cone_unique _ _ Fᵒᵖᶠ _ _ _ proof p qed _ proof q₁ qed _ proof q₂ qed definition colimit_hom_colimit [reducible] {F G : I ⇒ D} (η : F ⟹ G) : colimit_object F ⟶ colimit_object G := colimit_hom _ (λi, colimit_morphism G i ∘ η i) abstract by intro i j f; rewrite [-assoc,-naturality,assoc,colimit_commute] end omit H variable (F) definition colimit_object_iso_colimit_object [constructor] (H₁ H₂ : has_colimits_of_shape D I) : @(colimit_object F) H₁ ≅ @(colimit_object F) H₂ := iso_of_opposite_iso (limit_object_iso_limit_object Fᵒᵖᶠ H₁ H₂) definition colimit_functor [constructor] (D I : Precategory) [H : has_colimits_of_shape D I] : D ^c I ⇒ D := (limit_functor Dᵒᵖ Iᵒᵖ ∘f opposite_functor_opposite_left D I)ᵒᵖ' section bin_coproducts open bool prod.ops definition has_binary_coproducts [reducible] (D : Precategory) := has_colimits_of_shape D c2 variables [K : has_binary_coproducts D] (d d' : D) include K definition coproduct_object : D := colimit_object (c2_functor D d d') infixr `+l`:27 := coproduct_object local infixr + := coproduct_object definition inl : d ⟶ d + d' := colimit_morphism (c2_functor D d d') ff definition inr : d' ⟶ d + d' := colimit_morphism (c2_functor D d d') tt variables {d d'} definition coproduct_hom {x : D} (f : d ⟶ x) (g : d' ⟶ x) : d + d' ⟶ x := colimit_hom (c2_functor D d d') (bool.rec f g) (by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_right) theorem coproduct_hom_inl {x : D} (f : d ⟶ x) (g : d' ⟶ x) : coproduct_hom f g ∘ !inl = f := colimit_hom_commute (c2_functor D d d') (bool.rec f g) _ ff theorem coproduct_hom_inr {x : D} (f : d ⟶ x) (g : d' ⟶ x) : coproduct_hom f g ∘ !inr = g := colimit_hom_commute (c2_functor D d d') (bool.rec f g) _ tt theorem eq_coproduct_hom {x : D} {f : d ⟶ x} {g : d' ⟶ x} {h : d + d' ⟶ x} (p : h ∘ !inl = f) (q : h ∘ !inr = g) : h = coproduct_hom f g := eq_colimit_hom _ (bool.rec p q) theorem coproduct_cocone_unique {x : D} {f : d ⟶ x} {g : d' ⟶ x} {h₁ : d + d' ⟶ x} (p₁ : h₁ ∘ !inl = f) (q₁ : h₁ ∘ !inr = g) {h₂ : d + d' ⟶ x} (p₂ : h₂ ∘ !inl = f) (q₂ : h₂ ∘ !inr = g) : h₁ = h₂ := eq_coproduct_hom p₁ q₁ ⬝ (eq_coproduct_hom p₂ q₂)⁻¹ variable (D) -- TODO: define this in terms of colimit_functor and functor_two_left (in exponential_laws) definition coproduct_functor [constructor] : D ×c D ⇒ D := functor.mk (λx, coproduct_object x.1 x.2) (λx y f, coproduct_hom (!inl ∘ f.1) (!inr ∘ f.2)) abstract begin intro x, symmetry, apply eq_coproduct_hom: apply id_comp_eq_comp_id end end abstract begin intro x y z g f, symmetry, apply eq_coproduct_hom, rewrite [-assoc,coproduct_hom_inl,assoc,coproduct_hom_inl,-assoc], rewrite [-assoc,coproduct_hom_inr,assoc,coproduct_hom_inr,-assoc] end end omit K variables {D} (d d') definition coproduct_object_iso_coproduct_object [constructor] (H₁ H₂ : has_binary_coproducts D) : @coproduct_object D H₁ d d' ≅ @coproduct_object D H₂ d d' := colimit_object_iso_colimit_object _ H₁ H₂ end bin_coproducts /- intentionally we define coproducts in terms of colimits, but coequalizers in terms of equalizers, to see which characterization is more useful -/ section coequalizers open bool prod.ops sum equalizer_category_hom definition has_coequalizers [reducible] (D : Precategory) := has_equalizers Dᵒᵖ variables [K : has_coequalizers D] include K variables {d d' x : D} (f g : d ⟶ d') definition coequalizer_object : D := !(@equalizer_object Dᵒᵖ) f g definition coequalizer : d' ⟶ coequalizer_object f g := !(@equalizer Dᵒᵖ) theorem coequalizes : coequalizer f g ∘ f = coequalizer f g ∘ g := by rexact !(@equalizes Dᵒᵖ) variables {f g} definition coequalizer_hom (h : d' ⟶ x) (p : h ∘ f = h ∘ g) : coequalizer_object f g ⟶ x := !(@hom_equalizer Dᵒᵖ) proof p qed theorem coequalizer_hom_coequalizer (h : d' ⟶ x) (p : h ∘ f = h ∘ g) : coequalizer_hom h p ∘ coequalizer f g = h := by rexact !(@equalizer_hom_equalizer Dᵒᵖ) theorem eq_coequalizer_hom {h : d' ⟶ x} (p : h ∘ f = h ∘ g) {i : coequalizer_object f g ⟶ x} (q : i ∘ coequalizer f g = h) : i = coequalizer_hom h p := by rexact !(@eq_hom_equalizer Dᵒᵖ) proof q qed theorem coequalizer_cocone_unique {h : d' ⟶ x} (p : h ∘ f = h ∘ g) {i₁ : coequalizer_object f g ⟶ x} (q₁ : i₁ ∘ coequalizer f g = h) {i₂ : coequalizer_object f g ⟶ x} (q₂ : i₂ ∘ coequalizer f g = h) : i₁ = i₂ := !(@equalizer_cone_unique Dᵒᵖ) proof p qed proof q₁ qed proof q₂ qed omit K variables (f g) definition coequalizer_object_iso_coequalizer_object [constructor] (H₁ H₂ : has_coequalizers D) : @coequalizer_object D H₁ _ _ f g ≅ @coequalizer_object D H₂ _ _ f g := iso_of_opposite_iso !(@equalizer_object_iso_equalizer_object Dᵒᵖ) end coequalizers section pushouts open bool prod.ops sum pullback_category_hom definition has_pushouts [reducible] (D : Precategory) := has_pullbacks Dᵒᵖ variables [K : has_pushouts D] include K variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₂) (g : d₁ ⟶ d₃) definition pushout_object : D := !(@pullback_object Dᵒᵖ) f g definition pushout : d₃ ⟶ pushout_object f g := !(@pullback Dᵒᵖ) definition pushout_rev : d₂ ⟶ pushout_object f g := !(@pullback_rev Dᵒᵖ) theorem pushout_commutes : pushout_rev f g ∘ f = pushout f g ∘ g := by rexact !(@pullback_commutes Dᵒᵖ) variables {f g} definition pushout_hom (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g) : pushout_object f g ⟶ x := !(@hom_pullback Dᵒᵖ) proof p qed theorem pushout_hom_pushout (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g) : pushout_hom h₁ h₂ p ∘ pushout f g = h₂ := by rexact !(@pullback_hom_pullback Dᵒᵖ) theorem pushout_hom_pushout_rev (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g) : pushout_hom h₁ h₂ p ∘ pushout_rev f g = h₁ := by rexact !(@pullback_rev_hom_pullback Dᵒᵖ) theorem eq_pushout_hom {h₁ : d₂ ⟶ x} {h₂ : d₃ ⟶ x} (p : h₁ ∘ f = h₂ ∘ g) {i : pushout_object f g ⟶ x} (q : i ∘ pushout f g = h₂) (r : i ∘ pushout_rev f g = h₁) : i = pushout_hom h₁ h₂ p := by rexact !(@eq_hom_pullback Dᵒᵖ) proof q qed proof r qed theorem pushout_cocone_unique {h₁ : d₂ ⟶ x} {h₂ : d₃ ⟶ x} (p : h₁ ∘ f = h₂ ∘ g) {i₁ : pushout_object f g ⟶ x} (q₁ : i₁ ∘ pushout f g = h₂) (r₁ : i₁ ∘ pushout_rev f g = h₁) {i₂ : pushout_object f g ⟶ x} (q₂ : i₂ ∘ pushout f g = h₂) (r₂ : i₂ ∘ pushout_rev f g = h₁) : i₁ = i₂ := !(@pullback_cone_unique Dᵒᵖ) proof p qed proof q₁ qed proof r₁ qed proof q₂ qed proof r₂ qed omit K variables (f g) definition pushout_object_iso_pushout_object [constructor] (H₁ H₂ : has_pushouts D) : @pushout_object D H₁ _ _ _ f g ≅ @pushout_object D H₂ _ _ _ f g := iso_of_opposite_iso !(@pullback_object_iso_pullback_object (Opposite D)) end pushouts definition has_limits_of_shape_op_op [H : has_limits_of_shape D Iᵒᵖᵒᵖ] : has_limits_of_shape D I := by induction I with I Is; induction Is; exact H namespace ops infixr + := coproduct_object end ops end category