/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about sums/coproducts/disjoint unions -/ import .pi .equiv logic open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool namespace sum universe variables u v u' v' variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B) {P : A → Type.{u'}} {Q : A → Type.{v'}} protected definition eta : sum.rec inl inr z = z := by induction z; all_goals reflexivity protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v} | code (inl a) (inl a') := lift (a = a') | code (inr b) (inr b') := lift (b = b') | code _ _ := lift empty protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z' | decode (inl a) (inl a') := λc, ap inl (down c) | decode (inl a) (inr b') := λc, empty.elim (down c) _ | decode (inr b) (inl a') := λc, empty.elim (down c) _ | decode (inr b) (inr b') := λc, ap inr (down c) protected definition mem_cases : (Σ a, z = inl a) + (Σ b, z = inr b) := by cases z with a b; exact inl ⟨a, idp⟩; exact inr ⟨b, idp⟩ protected definition eqrec {A B : Type} {C : A + B → Type} (x : A + B) (cl : Π a, x = inl a → C (inl a)) (cr : Π b, x = inr b → C (inr b)) : C x := by cases x with a b; exact cl a idp; exact cr b idp variables {z z'} protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' := by induction p; induction z; all_goals exact up idp variables (z z') definition sum_eq_equiv [constructor] : (z = z') ≃ sum.code z z' := equiv.MK sum.encode !sum.decode abstract begin intro c, induction z with a b, all_goals induction z' with a' b', all_goals (esimp at *; induction c with c), all_goals induction c, -- c either has type empty or a path all_goals reflexivity end end abstract begin intro p, induction p, induction z, all_goals reflexivity end end section variables {a a' : A} {b b' : B} definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' := down (sum.encode p) definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' := down (sum.encode p) definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p) definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p) /- Transport -/ definition sum_transport (p : a = a') (z : P a + Q a) : p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z := by induction p; induction z; all_goals reflexivity /- Pathovers -/ definition etao (p : a = a') (z : P a + Q a) : z =[p] sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z := by induction p; induction z; all_goals constructor protected definition codeo (p : a = a') : P a + Q a → P a' + Q a' → Type.{max u' v'} | codeo (inl x) (inl x') := lift.{u' v'} (x =[p] x') | codeo (inr y) (inr y') := lift.{v' u'} (y =[p] y') | codeo _ _ := lift empty protected definition decodeo (p : a = a') : Π(z : P a + Q a) (z' : P a' + Q a'), sum.codeo p z z' → z =[p] z' | decodeo (inl x) (inl x') := λc, apo (λa, inl) (down c) | decodeo (inl x) (inr y') := λc, empty.elim (down c) _ | decodeo (inr y) (inl x') := λc, empty.elim (down c) _ | decodeo (inr y) (inr y') := λc, apo (λa, inr) (down c) variables {z z'} protected definition encodeo {p : a = a'} {z : P a + Q a} {z' : P a' + Q a'} (q : z =[p] z') : sum.codeo p z z' := by induction q; induction z; all_goals exact up idpo variables (z z') definition sum_pathover_equiv [constructor] (p : a = a') (z : P a + Q a) (z' : P a' + Q a') : (z =[p] z') ≃ sum.codeo p z z' := equiv.MK sum.encodeo !sum.decodeo abstract begin intro c, induction z with a b, all_goals induction z' with a' b', all_goals (esimp at *; induction c with c), all_goals induction c, -- c either has type empty or a pathover all_goals reflexivity end end abstract begin intro q, induction q, induction z, all_goals reflexivity end end end /- Functorial action -/ variables {A' B' : Type} (f : A → A') (g : B → B') definition sum_functor [unfold 7] : A + B → A' + B' | sum_functor (inl a) := inl (f a) | sum_functor (inr b) := inr (g b) /- Equivalences -/ definition is_equiv_sum_functor [constructor] [Hf : is_equiv f] [Hg : is_equiv g] : is_equiv (sum_functor f g) := adjointify (sum_functor f g) (sum_functor f⁻¹ g⁻¹) abstract begin intro z, induction z, all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv) end end abstract begin intro z, induction z, all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv) end end definition sum_equiv_sum_of_is_equiv [constructor] [Hf : is_equiv f] [Hg : is_equiv g] : A + B ≃ A' + B' := equiv.mk _ (is_equiv_sum_functor f g) definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' := equiv.mk _ (is_equiv_sum_functor f g) definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' := sum_equiv_sum equiv.refl g definition sum_equiv_sum_right [constructor] (f : A ≃ A') : A + B ≃ A' + B := sum_equiv_sum f equiv.refl definition flip [unfold 3] : A + B → B + A | flip (inl a) := inr a | flip (inr b) := inl b definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A := begin fapply equiv.MK, exact flip, exact flip, all_goals (intro z; induction z; all_goals reflexivity) end definition sum_assoc_equiv [constructor] (A B C : Type) : A + (B + C) ≃ (A + B) + C := begin fapply equiv.MK, all_goals try (intro z; induction z with u v; all_goals try induction u; all_goals try induction v), all_goals try (repeat append (append (apply inl) (apply inr)) assumption; now), all_goals reflexivity end definition sum_empty_equiv [constructor] (A : Type) : A + empty ≃ A := begin fapply equiv.MK, { intro z, induction z, assumption, contradiction}, { exact inl}, { intro a, reflexivity}, { intro z, induction z, reflexivity, contradiction} end definition empty_sum_equiv (A : Type) : empty + A ≃ A := !sum_comm_equiv ⬝e !sum_empty_equiv definition bool_equiv_unit_sum_unit : bool ≃ unit + unit := begin fapply equiv.MK, { intro b, cases b, exact inl unit.star, exact inr unit.star }, { intro s, cases s, exact bool.ff, exact bool.tt }, { intro s, cases s, do 2 (cases a; reflexivity) }, { intro b, cases b, do 2 reflexivity }, end definition sum_prod_right_distrib [constructor] (A B C : Type) : (A + B) × C ≃ (A × C) + (B × C) := begin fapply equiv.MK, { intro x, cases x with ab c, cases ab with a b, exact inl (a, c), exact inr (b, c) }, { intro x, cases x with ac bc, cases ac with a c, exact (inl a, c), cases bc with b c, exact (inr b, c) }, { intro x, cases x with ac bc, cases ac with a c, reflexivity, cases bc, reflexivity }, { intro x, cases x with ab c, cases ab with a b, do 2 reflexivity } end definition sum_prod_left_distrib [constructor] (A B C : Type) : A × (B + C) ≃ (A × B) + (A × C) := calc A × (B + C) ≃ (B + C) × A : prod_comm_equiv ... ≃ (B × A) + (C × A) : sum_prod_right_distrib ... ≃ (A × B) + (C × A) : prod_comm_equiv ... ≃ (A × B) + (A × C) : prod_comm_equiv section variables (H : unit + A ≃ unit + B) include H open unit decidable sigma.ops definition unit_sum_equiv_cancel_map : A → B := begin intro a, cases sum.mem_cases (H (inr a)) with u b, rotate 1, exact b.1, cases u with u Hu, cases sum.mem_cases (H (inl ⋆)) with u' b, rotate 1, exact b.1, cases u' with u' Hu', exfalso, apply empty_of_inl_eq_inr, calc inl ⋆ = H⁻¹ (H (inl ⋆)) : (to_left_inv H (inl ⋆))⁻¹ ... = H⁻¹ (inl u') : {Hu'} ... = H⁻¹ (inl u) : is_prop.elim ... = H⁻¹ (H (inr a)) : {Hu⁻¹} ... = inr a : to_left_inv H (inr a) end definition unit_sum_equiv_cancel_inv (b : B) : unit_sum_equiv_cancel_map H (unit_sum_equiv_cancel_map H⁻¹ b) = b := begin assert HH : to_fun H⁻¹ = (to_fun H)⁻¹, cases H, reflexivity, esimp[unit_sum_equiv_cancel_map], apply sum.rec, { intro x, cases x with u Hu, esimp, apply sum.rec, { intro x, exfalso, cases x with u' Hu', apply empty_of_inl_eq_inr, calc inl ⋆ = H⁻¹ (H (inl ⋆)) : (to_left_inv H (inl ⋆))⁻¹ ... = H⁻¹ (inl u') : ap H⁻¹ Hu' ... = H⁻¹ (inl u) : {!is_prop.elim} ... = H⁻¹ (H (inr _)) : {Hu⁻¹} ... = inr _ : to_left_inv H }, { intro x, cases x with b' Hb', esimp, cases sum.mem_cases (H⁻¹ (inr b)) with x x, { cases x with u' Hu', cases u', apply eq_of_inr_eq_inr, rewrite -HH at Hu', calc inr b' = H (inl ⋆) : Hb'⁻¹ ... = H (H⁻¹ (inr b)) : {(ap (to_fun H) Hu')⁻¹} ... = inr b : to_right_inv H (inr b) }, { exfalso, cases x with a Ha, rewrite -HH at Ha, apply empty_of_inl_eq_inr, cases u, apply concat, apply Hu⁻¹, apply concat, rotate 1, apply !(to_right_inv H), apply ap (to_fun H), krewrite -HH, apply concat, rotate 1, apply Ha⁻¹, apply ap inr, esimp, apply sum.rec, intro x, exfalso, apply empty_of_inl_eq_inr, apply concat, exact x.2⁻¹, apply Ha, intro x, cases x with a' Ha', esimp, apply eq_of_inr_eq_inr, apply Ha'⁻¹ ⬝ Ha } } }, { intro x, cases x with b' Hb', esimp, apply eq_of_inr_eq_inr, refine Hb'⁻¹ ⬝ _, cases sum.mem_cases (to_fun H⁻¹ (inr b)) with x x, { cases x with u Hu, esimp, cases sum.mem_cases (to_fun H⁻¹ (inl ⋆)) with x x, { cases x with u' Hu', exfalso, apply empty_of_inl_eq_inr, calc inl ⋆ = H (H⁻¹ (inl ⋆)) : (to_right_inv H (inl ⋆))⁻¹ ... = H (inl u') : {ap H Hu'} ... = H (inl u) : {!is_prop.elim} ... = H (H⁻¹ (inr b)) : {ap H Hu⁻¹} ... = inr b : to_right_inv H (inr b) }, { cases x with a Ha, exfalso, apply empty_of_inl_eq_inr, apply concat, rotate 1, exact Hb', krewrite HH at Ha, assert Ha' : inl ⋆ = H (inr a), apply !(to_right_inv H)⁻¹ ⬝ ap H Ha, apply concat Ha', apply ap H, apply ap inr, apply sum.rec, intro x, cases x with u' Hu', esimp, apply sum.rec, intro x, cases x with u'' Hu'', esimp, apply empty.rec, intro x, cases x with a'' Ha'', esimp, krewrite Ha' at Ha'', apply eq_of_inr_eq_inr, apply !(to_left_inv H)⁻¹ ⬝ Ha'', intro x, exfalso, cases x with a'' Ha'', apply empty_of_inl_eq_inr, apply Hu⁻¹ ⬝ Ha'', } }, { cases x with a' Ha', esimp, refine _ ⬝ !(to_right_inv H), apply ap H, rewrite -HH, apply Ha'⁻¹ } } end definition unit_sum_equiv_cancel : A ≃ B := begin fapply equiv.MK, apply unit_sum_equiv_cancel_map H, apply unit_sum_equiv_cancel_map H⁻¹, intro b, apply unit_sum_equiv_cancel_inv, { intro a, have H = (H⁻¹)⁻¹, from !equiv.symm_symm⁻¹, rewrite this at {2}, apply unit_sum_equiv_cancel_inv } end end /- universal property -/ definition sum_rec_unc [unfold 5] {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b))) : Πz, P z := sum.rec fg.1 fg.2 definition is_equiv_sum_rec [constructor] (P : A + B → Type) : is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) := begin apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))), intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity), intro h, induction h with f g, reflexivity end definition equiv_sum_rec [constructor] (P : A + B → Type) : (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z := equiv.mk _ !is_equiv_sum_rec definition imp_prod_imp_equiv_sum_imp [constructor] (A B C : Type) : (A → C) × (B → C) ≃ (A + B → C) := !equiv_sum_rec /- truncatedness -/ variables (A B) theorem is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B] : is_trunc (n.+2) (A + B) := begin apply is_trunc_succ_intro, intro z z', apply is_trunc_equiv_closed_rev, apply sum_eq_equiv, induction z with a b, all_goals induction z' with a' b', all_goals esimp, all_goals exact _, end theorem is_trunc_sum_excluded (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B] (H : A → B → empty) : is_trunc n (A + B) := begin induction n with n IH, { exfalso, exact H !center !center}, { clear IH, induction n with n IH, { apply is_prop.mk, intros x y, induction x, all_goals induction y, all_goals esimp, all_goals try (exfalso;apply H;assumption;assumption), all_goals apply ap _ !is_prop.elim}, { apply is_trunc_sum}} end variable {B} definition is_contr_sum_left [HA : is_contr A] (H : ¬B) : is_contr (A + B) := is_contr.mk (inl !center) (λx, sum.rec_on x (λa, ap inl !center_eq) (λb, empty.elim (H b))) /- Sums are equivalent to dependent sigmas where the first component is a bool. The current construction only works for A and B in the same universe. If we need it for A and B in different universes, we need to insert some lifts. -/ definition sum_of_sigma_bool {A B : Type.{u}} (v : Σ(b : bool), bool.rec A B b) : A + B := by induction v with b x; induction b; exact inl x; exact inr x definition sigma_bool_of_sum {A B : Type.{u}} (z : A + B) : Σ(b : bool), bool.rec A B b := by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩ definition sum_equiv_sigma_bool [constructor] (A B : Type.{u}) : A + B ≃ Σ(b : bool), bool.rec A B b := equiv.MK sigma_bool_of_sum sum_of_sigma_bool begin intro v, induction v with b x, induction b, all_goals reflexivity end begin intro z, induction z with a b, all_goals reflexivity end end sum open sum pi namespace decidable definition decidable_equiv [constructor] (A : Type) : decidable A ≃ A + ¬A := begin fapply equiv.MK:intro a;induction a:try (constructor;assumption;now), all_goals reflexivity end definition is_trunc_decidable [constructor] (A : Type) (n : trunc_index) [H : is_trunc n A] : is_trunc n (decidable A) := begin apply is_trunc_equiv_closed_rev, apply decidable_equiv, induction n with n IH, { apply is_contr_sum_left, exact λna, na !center}, { apply is_trunc_sum_excluded, exact λa na, na a} end end decidable attribute sum.is_trunc_sum [instance] [priority 1480] definition tsum [constructor] {n : trunc_index} (A B : (n.+2)-Type) : (n.+2)-Type := trunctype.mk (A + B) _ infixr `+t`:25 := tsum