-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad -- logic.connectives.eq -- ==================== -- Equality. import .prop -- eq -- -- inductive eq {A : Type} (a : A) : A → Prop := refl : eq a a infix `=` := eq definition rfl {A : Type} {a : A} := eq.refl a namespace eq theorem id_refl {A : Type} {a : A} (H1 : a = a) : H1 = (eq.refl a) := rfl theorem irrel {A : Type} {a b : A} (H1 H2 : a = b) : H1 = H2 := rfl theorem subst {A : Type} {a b : A} {P : A → Prop} (H1 : a = b) (H2 : P a) : P b := rec H2 H1 theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c := subst H2 H1 theorem symm {A : Type} {a b : A} (H : a = b) : b = a := subst H (refl a) end eq calc_subst eq.subst calc_refl eq.refl calc_trans eq.trans namespace eq_ops postfix `⁻¹` := eq.symm infixr `⬝` := eq.trans infixr `▸` := eq.subst end eq_ops open eq_ops namespace eq -- eq_rec with arguments swapped, for transporting an element of a dependent type definition rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 := eq.rec H2 H1 theorem rec_on_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec_on H b = b := refl (rec_on rfl b) theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b := rec_on_id H b theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c) (u : P a) : rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u := (show ∀(H2 : b = c), rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u, from rec_on H2 (take (H2 : b = b), rec_on_id H2 _)) H2 end eq theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := H ▸ rfl theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b := H ▸ rfl theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b := H1 ▸ H2 ▸ rfl theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x := take x, congr_fun H x theorem eqmp {a b : Prop} (H1 : a = b) (H2 : a) : b := H1 ▸ H2 theorem eqmpr {a b : Prop} (H1 : a = b) (H2 : b) : a := H1⁻¹ ▸ H2 theorem eq_true_elim {a : Prop} (H : a = true) : a := H⁻¹ ▸ trivial theorem eq_false_elim {a : Prop} (H : a = false) : ¬a := assume Ha : a, H ▸ Ha theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c := assume Ha, H2 (H1 Ha) theorem imp_eq_trans {a b c : Prop} (H1 : a → b) (H2 : b = c) : a → c := assume Ha, H2 ▸ (H1 Ha) theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c := assume Ha, H2 (H1 ▸ Ha) -- ne -- -- definition ne {A : Type} (a b : A) := ¬(a = b) infix `≠` := ne namespace ne theorem intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b := H theorem elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false := H1 H2 theorem irrefl {A : Type} {a : A} (H : a ≠ a) : false := H rfl theorem symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a := assume H1 : b = a, H (H1⁻¹) end ne theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false := H rfl theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := H1⁻¹ ▸ H2 theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := H2 ▸ H1 calc_trans eq_ne_trans calc_trans ne_eq_trans theorem p_ne_false {p : Prop} (Hp : p) : p ≠ false := assume Heq : p = false, Heq ▸ Hp theorem p_ne_true {p : Prop} (Hnp : ¬p) : p ≠ true := assume Heq : p = true, absurd trivial (Heq ▸ Hnp) theorem true_ne_false : ¬true = false := assume H : true = false, H ▸ trivial