/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Ulrik Buchholtz Declaration of suspension -/ import hit.pushout types.pointed cubical.square .connectedness open pushout unit eq equiv definition susp (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star) namespace susp variable {A : Type} definition north {A : Type} : susp A := inl star definition south {A : Type} : susp A := inr star definition merid (a : A) : @north A = @south A := glue a protected definition rec {P : susp A → Type} (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) (x : susp A) : P x := begin induction x with u u, { cases u, exact PN}, { cases u, exact PS}, { apply Pm}, end protected definition rec_on [reducible] {P : susp A → Type} (y : susp A) (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y := susp.rec PN PS Pm y theorem rec_merid {P : susp A → Type} (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) (a : A) : apd (susp.rec PN PS Pm) (merid a) = Pm a := !rec_glue protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (x : susp A) : P := susp.rec PN PS (λa, pathover_of_eq _ (Pm a)) x protected definition elim_on [reducible] {P : Type} (x : susp A) (PN : P) (PS : P) (Pm : A → PN = PS) : P := susp.elim PN PS Pm x theorem elim_merid {P : Type} {PN PS : P} (Pm : A → PN = PS) (a : A) : ap (susp.elim PN PS Pm) (merid a) = Pm a := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (merid a)), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑susp.elim,rec_merid], end protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (x : susp A) : Type := pushout.elim_type (λx, PN) (λx, PS) Pm x protected definition elim_type_on [reducible] (x : susp A) (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type := susp.elim_type PN PS Pm x theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (a : A) : transport (susp.elim_type PN PS Pm) (merid a) = Pm a := !elim_type_glue theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) := !elim_type_glue_inv protected definition merid_square {a a' : A} (p : a = a') : square (merid a) (merid a') idp idp := by cases p; apply vrefl end susp attribute susp.north susp.south [constructor] attribute susp.rec susp.elim [unfold 6] [recursor 6] attribute susp.elim_type [unfold 5] attribute susp.rec_on susp.elim_on [unfold 3] attribute susp.elim_type_on [unfold 2] namespace susp open is_trunc is_conn trunc -- Theorem 8.2.1 definition is_conn_susp [instance] (n : trunc_index) (A : Type) [H : is_conn n A] : is_conn (n .+1) (susp A) := is_contr.mk (tr north) begin apply trunc.rec, fapply susp.rec, { reflexivity }, { exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) }, { intro a, generalize (center (trunc n A)), apply trunc.rec, intro a', apply pathover_of_tr_eq, rewrite [eq_transport_Fr,idp_con], revert H, induction n with [n, IH], { intro H, apply is_prop.elim }, { intros H, change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'), generalize a', apply is_conn_fun.elim n (is_conn_fun_from_unit n A a) (λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))), intros, change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a), reflexivity } } end /- Flattening lemma -/ open prod prod.ops section universe variable u parameters (A : Type) (PN PS : Type.{u}) (Pm : A → PN ≃ PS) include Pm local abbreviation P [unfold 5] := susp.elim_type PN PS Pm local abbreviation F : A × PN → PN := λz, z.2 local abbreviation G : A × PN → PS := λz, Pm z.1 z.2 protected definition flattening : sigma P ≃ pushout F G := begin apply equiv.trans !pushout.flattening, fapply pushout.equiv, { exact sigma.equiv_prod A PN }, { apply sigma.sigma_unit_left }, { apply sigma.sigma_unit_left }, { reflexivity }, { reflexivity } end end end susp /- Functoriality and equivalence -/ namespace susp variables {A B : Type} (f : A → B) include f protected definition functor [unfold 4] : susp A → susp B := begin intro x, induction x with a, { exact north }, { exact south }, { exact merid (f a) } end variable [Hf : is_equiv f] include Hf open is_equiv protected definition is_equiv_functor [instance] [constructor] : is_equiv (susp.functor f) := adjointify (susp.functor f) (susp.functor f⁻¹) abstract begin intro sb, induction sb with b, do 2 reflexivity, apply eq_pathover, rewrite [ap_id,ap_compose' (susp.functor f) (susp.functor f⁻¹)], krewrite [susp.elim_merid,susp.elim_merid], apply transpose, apply susp.merid_square (right_inv f b) end end abstract begin intro sa, induction sa with a, do 2 reflexivity, apply eq_pathover, rewrite [ap_id,ap_compose' (susp.functor f⁻¹) (susp.functor f)], krewrite [susp.elim_merid,susp.elim_merid], apply transpose, apply susp.merid_square (left_inv f a) end end end susp namespace susp variables {A B : Type} (f : A ≃ B) protected definition equiv : susp A ≃ susp B := equiv.mk (susp.functor f) _ end susp namespace susp open pointed definition pointed_susp [instance] [constructor] (X : Type) : pointed (susp X) := pointed.mk north end susp open susp definition psusp [constructor] (X : Type) : Type* := pointed.mk' (susp X) namespace susp open pointed is_trunc variables {X Y Z : Type*} definition is_conn_psusp [instance] (n : trunc_index) (A : Type*) [H : is_conn n A] : is_conn (n .+1) (psusp A) := is_conn_susp n A definition psusp_functor [constructor] (f : X →* Y) : psusp X →* psusp Y := begin fconstructor, { exact susp.functor f }, { reflexivity } end definition is_equiv_psusp_functor [constructor] (f : X →* Y) [Hf : is_equiv f] : is_equiv (psusp_functor f) := susp.is_equiv_functor f definition psusp_equiv [constructor] (f : X ≃* Y) : psusp X ≃* psusp Y := pequiv_of_equiv (susp.equiv f) idp definition psusp_functor_compose (g : Y →* Z) (f : X →* Y) : psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f := begin fconstructor, { intro a, induction a, { reflexivity }, { reflexivity }, { apply eq_pathover, apply hdeg_square, rewrite [▸*,ap_compose' _ (psusp_functor f)], krewrite +susp.elim_merid } }, { reflexivity } end -- adjunction from Coq-HoTT definition loop_psusp_unit [constructor] (X : Type*) : X →* Ω(psusp X) := begin fconstructor, { intro x, exact merid x ⬝ (merid pt)⁻¹ }, { apply con.right_inv }, end definition loop_psusp_unit_natural (f : X →* Y) : loop_psusp_unit Y ∘* f ~* ap1 (psusp_functor f) ∘* loop_psusp_unit X := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, fconstructor, { intro x', esimp [psusp_functor], symmetry, exact !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ (inverse2 !elim_merid)) }, { rewrite [▸*,idp_con (con.right_inv _)], apply inv_con_eq_of_eq_con, refine _ ⬝ !con.assoc', rewrite inverse2_right_inv, refine _ ⬝ !con.assoc', rewrite [ap_con_right_inv], xrewrite [idp_con_idp, -ap_compose (concat idp)] }, end definition loop_psusp_counit [constructor] (X : Type*) : psusp (Ω X) →* X := begin fconstructor, { intro x, induction x, exact pt, exact pt, exact a }, { reflexivity }, end definition loop_psusp_counit_natural (f : X →* Y) : f ∘* loop_psusp_counit X ~* loop_psusp_counit Y ∘* (psusp_functor (ap1 f)) := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, fconstructor, { intro x', induction x' with p, { reflexivity }, { reflexivity }, { esimp, apply eq_pathover, apply hdeg_square, xrewrite [ap_compose' f, ap_compose' (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*], xrewrite [+elim_merid,▸*,idp_con] }}, { reflexivity } end definition loop_psusp_counit_unit (X : Type*) : ap1 (loop_psusp_counit X) ∘* loop_psusp_unit (Ω X) ~* pid (Ω X) := begin induction X with X x, fconstructor, { intro p, esimp, refine !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ inverse2 !elim_merid) }, { rewrite [▸*,inverse2_right_inv (elim_merid id idp)], refine !con.assoc ⬝ _, xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose] } end definition loop_psusp_unit_counit (X : Type*) : loop_psusp_counit (psusp X) ∘* psusp_functor (loop_psusp_unit X) ~* pid (psusp X) := begin induction X with X x, fconstructor, { intro x', induction x', { reflexivity }, { exact merid pt }, { apply eq_pathover, xrewrite [▸*, ap_id, ap_compose' (susp.elim north north (λa, a)), +elim_merid,▸*], apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹ }}, { reflexivity } end definition psusp.elim [constructor] {X Y : Type*} (f : X →* Ω Y) : psusp X →* Y := loop_psusp_counit Y ∘* psusp_functor f definition loop_psusp_intro [constructor] {X Y : Type*} (f : psusp X →* Y) : X →* Ω Y := ap1 f ∘* loop_psusp_unit X definition psusp_adjoint_loop_right_inv {X Y : Type*} (g : X →* Ω Y) : loop_psusp_intro (psusp.elim g) ~* g := begin refine !pwhisker_right !ap1_pcompose ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_psusp_unit_natural⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_psusp_counit_unit ⬝* _, apply pid_pcompose end definition psusp_adjoint_loop_left_inv {X Y : Type*} (f : psusp X →* Y) : psusp.elim (loop_psusp_intro f) ~* f := begin refine !pwhisker_left !psusp_functor_compose ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_psusp_counit_natural⁻¹* ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_psusp_unit_counit ⬝* _, apply pcompose_pid end -- TODO: rename to psusp_adjoint_loop (also in above lemmas) definition psusp_adjoint_loop_unpointed [constructor] (X Y : Type*) : psusp X →* Y ≃ X →* Ω Y := begin fapply equiv.MK, { exact loop_psusp_intro }, { exact psusp.elim }, { intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g }, { intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f } end definition psusp_adjoint_loop_pconst (X Y : Type*) : psusp_adjoint_loop_unpointed X Y (pconst (psusp X) Y) ~* pconst X (Ω Y) := begin refine pwhisker_right _ !ap1_pconst ⬝* _, apply pconst_pcompose end definition psusp_adjoint_loop [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) := begin apply pequiv_of_equiv (psusp_adjoint_loop_unpointed X Y), apply eq_of_phomotopy, apply psusp_adjoint_loop_pconst end definition ap1_psusp_elim {A : Type*} {X : Type*} (p : A →* Ω X) : Ω→(psusp.elim p) ∘* loop_psusp_unit A ~* p := psusp_adjoint_loop_right_inv p definition psusp_adjoint_loop_nat_right (f : psusp X →* Y) (g : Y →* Z) : psusp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* psusp_adjoint_loop X Y f := begin esimp [psusp_adjoint_loop], refine _ ⬝* !passoc, apply pwhisker_right, apply ap1_pcompose end definition psusp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y) : (psusp_adjoint_loop X Z)⁻¹ᵉ (f ∘* g) ~* (psusp_adjoint_loop Y Z)⁻¹ᵉ f ∘* psusp_functor g := begin esimp [psusp_adjoint_loop], refine _ ⬝* !passoc⁻¹*, apply pwhisker_left, apply psusp_functor_compose end /- iterated suspension -/ definition iterate_susp (n : ℕ) (A : Type) : Type := iterate susp n A definition iterate_psusp (n : ℕ) (A : Type*) : Type* := iterate (λX, psusp X) n A open is_conn trunc_index nat definition iterate_susp_succ (n : ℕ) (A : Type) : iterate_susp (succ n) A = susp (iterate_susp n A) := idp definition is_conn_iterate_susp [instance] (n : ℕ₋₂) (m : ℕ) (A : Type) [H : is_conn n A] : is_conn (n + m) (iterate_susp m A) := begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end definition is_conn_iterate_psusp [instance] (n : ℕ₋₂) (m : ℕ) (A : Type*) [H : is_conn n A] : is_conn (n + m) (iterate_psusp m A) := begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end -- Separate cases for n = 0, which comes up often definition is_conn_iterate_susp_zero [instance] (m : ℕ) (A : Type) [H : is_conn 0 A] : is_conn m (iterate_susp m A) := begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end definition is_conn_iterate_psusp_zero [instance] (m : ℕ) (A : Type*) [H : is_conn 0 A] : is_conn m (iterate_psusp m A) := begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end definition iterate_psusp_functor (n : ℕ) {A B : Type*} (f : A →* B) : iterate_psusp n A →* iterate_psusp n B := begin induction n with n g, { exact f }, { exact psusp_functor g } end definition iterate_psusp_succ_in (n : ℕ) (A : Type*) : iterate_psusp (succ n) A ≃* iterate_psusp n (psusp A) := begin induction n with n IH, { reflexivity}, { exact psusp_equiv IH} end definition iterate_psusp_adjoint_loopn [constructor] (X Y : Type*) (n : ℕ) : ppmap (iterate_psusp n X) Y ≃* ppmap X (Ω[n] Y) := begin revert X Y, induction n with n IH: intro X Y, { reflexivity }, { refine !psusp_adjoint_loop ⬝e* !IH ⬝e* _, apply pequiv_ppcompose_left, symmetry, apply loopn_succ_in } end end susp