-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad -- logic.instances -- ==================== import logic.connectives algebra.relation namespace relation open relation -- Congruences for logic -- --------------------- theorem congruence_not : congruence iff iff not := congruence.mk (take a b, assume H : a ↔ b, iff.intro (assume H1 : ¬a, assume H2 : b, H1 (iff.elim_right H H2)) (assume H1 : ¬b, assume H2 : a, H1 (iff.elim_left H H2))) theorem congruence_and : congruence2 iff iff iff and := congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 ∧ a2, and.imp_and H3 (iff.elim_left H1) (iff.elim_left H2)) (assume H3 : b1 ∧ b2, and.imp_and H3 (iff.elim_right H1) (iff.elim_right H2))) theorem congruence_or : congruence2 iff iff iff or := congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 ∨ a2, or.imp_or H3 (iff.elim_left H1) (iff.elim_left H2)) (assume H3 : b1 ∨ b2, or.imp_or H3 (iff.elim_right H1) (iff.elim_right H2))) theorem congruence_imp : congruence2 iff iff iff imp := congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 → a2, assume Hb1 : b1, iff.elim_left H2 (H3 ((iff.elim_right H1) Hb1))) (assume H3 : b1 → b2, assume Ha1 : a1, iff.elim_right H2 (H3 ((iff.elim_left H1) Ha1)))) theorem congruence_iff : congruence2 iff iff iff iff := congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2)) (assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2)))) -- theorem congruence_const_iff [instance] := congruence.const iff iff.refl definition congruence_not_compose [instance] := congruence.compose congruence_not definition congruence_and_compose [instance] := congruence.compose21 congruence_and definition congruence_or_compose [instance] := congruence.compose21 congruence_or definition congruence_implies_compose [instance] := congruence.compose21 congruence_imp definition congruence_iff_compose [instance] := congruence.compose21 congruence_iff -- Generalized substitution -- ------------------------ -- TODO: note that the target has to be "iff". Otherwise, there is not enough -- information to infer an mp-like relation. namespace general_operations theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ [C : congruence R iff P] {a b : T} (H : R a b) (H1 : P a) : P b := iff.elim_left (congruence.app C H) H1 end general_operations -- = is an equivalence relation -- ---------------------------- theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive (@eq T) := relation.is_reflexive.mk (@eq.refl T) theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric (@eq T) := relation.is_symmetric.mk (@eq.symm T) theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive (@eq T) := relation.is_transitive.mk (@eq.trans T) -- TODO: this is only temporary, needed to inform Lean that is_equivalence is a class theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) := relation.is_equivalence.mk _ _ _ -- iff is an equivalence relation -- ------------------------------ theorem is_reflexive_iff [instance] : relation.is_reflexive iff := relation.is_reflexive.mk (@iff.refl) theorem is_symmetric_iff [instance] : relation.is_symmetric iff := relation.is_symmetric.mk (@iff.symm) theorem is_transitive_iff [instance] : relation.is_transitive iff := relation.is_transitive.mk (@iff.trans) -- Mp-like for iff -- --------------- theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : @relation.mp_like iff a b H := relation.mp_like.mk (iff.elim_left H) -- Substition for iff -- ------------------ namespace iff theorem subst {P : Prop → Prop} [C : congruence iff iff P] {a b : Prop} (H : a ↔ b) (H1 : P a) : P b := @general_operations.subst Prop iff P C a b H H1 end iff -- Support for calculations with iff -- ---------------- calc_subst iff.subst namespace iff_ops postfix `⁻¹`:100 := iff.symm infixr `⬝`:75 := iff.trans infixr `▸`:75 := iff.subst definition refl := iff.refl definition symm := @iff.symm definition trans := @iff.trans definition subst := @iff.subst definition mp := @iff.mp end iff_ops end relation