import logic inductive nat : Type := zero : nat, succ : nat → nat namespace nat definition add (x y : nat) : nat := nat.rec x (λn r, succ r) y infixl `+`:65 := add axiom add_right_comm (n m k : nat) : n + m + k = n + k + m open eq print "===========================" theorem bug (a b c d : nat) : a + b + c + d = a + c + b + d := subst (add_right_comm _ _ _) (eq.refl (a + b + c + d)) end nat