/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include "util/interrupt.h" #include "util/luaref.h" #include "util/lazy_list_fn.h" #include "util/sstream.h" #include "util/lbool.h" #include "kernel/for_each_fn.h" #include "kernel/abstract.h" #include "kernel/instantiate.h" #include "kernel/type_checker.h" #include "kernel/kernel_exception.h" #include "kernel/error_msgs.h" #include "library/occurs.h" #include "library/unifier.h" #include "library/opaque_hints.h" #include "library/unifier_plugin.h" #include "library/kernel_bindings.h" namespace lean { static name g_unifier_max_steps {"unifier", "max_steps"}; RegisterUnsignedOption(g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS, "(unifier) maximum number of steps"); unsigned get_unifier_max_steps(options const & opts) { return opts.get_unsigned(g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS); } /** \brief Return true iff \c [begin_locals, end_locals) contains \c local */ template bool contains_local(expr const & local, It const & begin_locals, It const & end_locals) { return std::any_of(begin_locals, end_locals, [&](expr const & l) { return mlocal_name(local) == mlocal_name(l); }); } /** \brief Return true iff \c locals contains \c local */ bool contains_local(expr const & local, buffer const & locals) { return contains_local(local, locals.begin(), locals.end()); } // If \c e is a metavariable ?m or a term of the form (?m l_1 ... l_n) where // l_1 ... l_n are distinct local variables, then return ?m, and store l_1 ... l_n in args. // Otherwise return none. optional is_simple_meta(expr const & e, buffer & args) { expr const & m = get_app_args(e, args); if (!is_metavar(m)) return none_expr(); for (auto it = args.begin(); it != args.end(); it++) { if (!is_local(*it) || contains_local(*it, args.begin(), it)) return none_expr(); } return some_expr(m); } bool is_simple_meta(expr const & e) { buffer args; return (bool)is_simple_meta(e, args); // NOLINT } // Return true if all local constants in \c e are in locals bool context_check(expr const & e, buffer const & locals) { bool failed = false; for_each(e, [&](expr const & e, unsigned) { if (failed) return false; if (is_local(e) && !contains_local(e, locals)) { failed = true; return false; } return has_local(e); }); return !failed; } // Return // - l_undef if \c e contains a metavariable application that contains // a local constant not in locals // - l_true if \c e does not contain the metavariable \c m, and all local // constants are in \c e are in \c locals. // - l_false if \c e contains \c m or it contains a local constant \c l // not in locals that is not in a metavariable application. lbool occurs_context_check(substitution & s, expr const & e, expr const & m, buffer const & locals) { expr root = e; lbool r = l_true; for_each(e, [&](expr const & e, unsigned) { if (r == l_false) { return false; } else if (is_local(e)) { if (!contains_local(e, locals)) { // right-hand-side contains variable that is not in the scope // of metavariable. r = l_false; } return false; // do not visit type } else if (is_meta(e)) { if (r == l_true) { if (!context_check(e, locals)) r = l_undef; if (s.occurs(m, e)) r = l_undef; } if (mlocal_name(get_app_fn(e)) == mlocal_name(m)) r = l_false; return false; // do not visit children } else { // we only need to continue exploring e if it contains // metavariables and/or local constants. return has_expr_metavar(e) || has_local(e); } }); return r; } // Create a lambda abstraction by abstracting the local constants \c locals in \c e expr lambda_abstract_locals(expr const & e, buffer const & locals) { expr v = abstract_locals(e, locals.size(), locals.data()); unsigned i = locals.size(); while (i > 0) { --i; expr t = abstract_locals(mlocal_type(locals[i]), i, locals.data()); v = mk_lambda(local_pp_name(locals[i]), t, v); } return v; } unify_status unify_simple_core(substitution & s, expr const & lhs, expr const & rhs, justification const & j) { lean_assert(is_meta(lhs)); buffer args; auto m = is_simple_meta(lhs, args); if (!m || is_meta(rhs)) { return unify_status::Unsupported; } else { switch (occurs_context_check(s, rhs, *m, args)) { case l_false: return unify_status::Failed; case l_undef: return unify_status::Unsupported; case l_true: { expr v = lambda_abstract_locals(rhs, args); s.assign(mlocal_name(*m), v, j); return unify_status::Solved; }} } lean_unreachable(); // LCOV_EXCL_LINE } unify_status unify_simple(substitution & s, expr const & lhs, expr const & rhs, justification const & j) { if (lhs == rhs) return unify_status::Solved; else if (!has_metavar(lhs) && !has_metavar(rhs)) return unify_status::Failed; else if (is_meta(lhs)) return unify_simple_core(s, lhs, rhs, j); else if (is_meta(rhs)) return unify_simple_core(s, rhs, lhs, j); else return unify_status::Unsupported; } // Return true if m occurs in e bool occurs_meta(level const & m, level const & e) { lean_assert(is_meta(m)); bool contains = false; for_each(e, [&](level const & l) { if (contains) return false; if (l == m) { contains = true; return false; } return has_meta(l); }); return contains; } unify_status unify_simple_core(substitution & s, level const & lhs, level const & rhs, justification const & j) { lean_assert(is_meta(lhs)); bool contains = occurs_meta(lhs, rhs); if (contains) { if (is_succ(rhs)) return unify_status::Failed; else return unify_status::Unsupported; } s.assign(meta_id(lhs), rhs, j); return unify_status::Solved; } unify_status unify_simple(substitution & s, level const & lhs, level const & rhs, justification const & j) { if (lhs == rhs) return unify_status::Solved; else if (!has_meta(lhs) && !has_meta(rhs)) return unify_status::Failed; else if (is_meta(lhs)) return unify_simple_core(s, lhs, rhs, j); else if (is_meta(rhs)) return unify_simple_core(s, rhs, lhs, j); else if (is_succ(lhs) && is_succ(rhs)) return unify_simple(s, succ_of(lhs), succ_of(rhs), j); else return unify_status::Unsupported; } unify_status unify_simple(substitution & s, constraint const & c) { if (is_eq_cnstr(c)) return unify_simple(s, cnstr_lhs_expr(c), cnstr_rhs_expr(c), c.get_justification()); else if (is_level_eq_cnstr(c)) return unify_simple(s, cnstr_lhs_level(c), cnstr_rhs_level(c), c.get_justification()); else return unify_status::Unsupported; } static constraint g_dont_care_cnstr = mk_eq_cnstr(expr(), expr(), justification(), false); static unsigned g_group_size = 1u << 29; static unsigned g_cnstr_group_first_index[6] = { 0, g_group_size, 2*g_group_size, 3*g_group_size, 4*g_group_size, 5*g_group_size}; static unsigned get_group_first_index(cnstr_group g) { return g_cnstr_group_first_index[static_cast(g)]; } /** \brief Convert choice constraint delay factor to cnstr_group */ cnstr_group get_choice_cnstr_group(constraint const & c) { lean_assert(is_choice_cnstr(c)); unsigned f = cnstr_delay_factor(c); if (f > static_cast(cnstr_group::MaxDelayed)) { return cnstr_group::MaxDelayed; } else { return static_cast(f); } } /** \brief Auxiliary functional object for implementing simultaneous higher-order unification */ struct unifier_fn { typedef std::pair cnstr; // constraint + idx struct cnstr_cmp { int operator()(cnstr const & c1, cnstr const & c2) const { return c1.second < c2.second ? -1 : (c1.second == c2.second ? 0 : 1); } }; typedef rb_tree cnstr_set; typedef rb_tree cnstr_idx_set; typedef rb_map name_to_cnstrs; typedef std::unique_ptr type_checker_ptr; environment m_env; name_generator m_ngen; substitution m_subst; unifier_plugin m_plugin; type_checker_ptr m_tc[2]; bool m_use_exception; //!< True if we should throw an exception when there are no more solutions. unsigned m_max_steps; unsigned m_num_steps; bool m_first; //!< True if we still have to generate the first solution. unsigned m_next_assumption_idx; //!< Next assumption index. unsigned m_next_cidx; //!< Next constraint index. /** \brief "Queue" of constraints to be solved. We implement it using a red-black-tree because: 1- Our red-black-trees support a O(1) copy operation. So, it is cheap to create a snapshot whenever we create a backtracking point. 2- We can easily remove any constraint from the queue in O(n log n). We do that when a metavariable \c m is assigned, and we want to instantiate it in all constraints that contains it. */ cnstr_set m_cnstrs; /** \brief The following map is an index. The map a metavariable name \c m to the set of constraint indices that contain \c m. We use these indices whenever a metavariable \c m is assigned. When the metavariable is assigned, we used this index to remove constraints that contains \c m from \c m_cnstrs, instantiate \c m, and reprocess them. \remark \c m_mvar_occs is for regular metavariables. */ name_to_cnstrs m_mvar_occs; /** \brief Base class for the case-splits created by the unifier. We have three different kinds of case splits: 1- unifier plugin 2- choice constraints 3- higher-order unification */ struct case_split { unsigned m_assumption_idx; // idx of the current assumption justification m_jst; justification m_failed_justifications; // justifications for failed branches // snapshot of unifier's state substitution m_subst; cnstr_set m_cnstrs; name_to_cnstrs m_mvar_occs; /** \brief Save unifier's state */ case_split(unifier_fn & u, justification const & j): m_assumption_idx(u.m_next_assumption_idx), m_jst(j), m_subst(u.m_subst), m_cnstrs(u.m_cnstrs), m_mvar_occs(u.m_mvar_occs) { u.m_next_assumption_idx++; u.m_tc[0]->push(); u.m_tc[1]->push(); } /** \brief Restore unifier's state with saved values, and update m_assumption_idx and m_failed_justifications. */ void restore_state(unifier_fn & u) { lean_assert(u.in_conflict()); u.m_tc[0]->pop(); // restore type checker state u.m_tc[1]->pop(); // restore type checker state u.m_tc[0]->push(); u.m_tc[1]->push(); u.m_subst = m_subst; u.m_cnstrs = m_cnstrs; u.m_mvar_occs = m_mvar_occs; m_assumption_idx = u.m_next_assumption_idx; m_failed_justifications = mk_composite1(m_failed_justifications, *u.m_conflict); u.m_next_assumption_idx++; u.m_conflict = optional(); } justification get_jst() const { return m_jst; } virtual ~case_split() {} virtual bool next(unifier_fn & u) = 0; }; typedef std::vector> case_split_stack; struct lazy_constraints_case_split : public case_split { lazy_list m_tail; lazy_constraints_case_split(unifier_fn & u, justification const & j, lazy_list const & tail):case_split(u, j), m_tail(tail) {} virtual bool next(unifier_fn & u) { return u.next_lazy_constraints_case_split(*this); } }; struct simple_case_split : public case_split { list m_tail; simple_case_split(unifier_fn & u, justification const & j, list const & tail):case_split(u, j), m_tail(tail) {} virtual bool next(unifier_fn & u) { return u.next_simple_case_split(*this); } }; case_split_stack m_case_splits; optional m_conflict; //!< if different from none, then there is a conflict. unifier_fn(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen, substitution const & s, bool use_exception, unsigned max_steps): m_env(env), m_ngen(ngen), m_subst(s), m_plugin(get_unifier_plugin(env)), m_use_exception(use_exception), m_max_steps(max_steps), m_num_steps(0) { m_tc[0] = mk_type_checker_with_hints(env, m_ngen.mk_child(), false); m_tc[1] = mk_type_checker_with_hints(env, m_ngen.mk_child(), true); m_next_assumption_idx = 0; m_next_cidx = 0; m_first = true; for (unsigned i = 0; i < num_cs; i++) { process_constraint(cs[i]); } } void check_system() { check_interrupted(); if (m_num_steps > m_max_steps) throw exception(sstream() << "unifier maximum number of steps (" << m_max_steps << ") exceeded, " << "the maximum number of steps can be increased by setting the option unifier.max_steps " << "(remark: the unifier uses higher order unification and unification-hints, which may trigger non-termination"); m_num_steps++; } bool in_conflict() const { return (bool)m_conflict; } // NOLINT void set_conflict(justification const & j) { m_conflict = j; } void update_conflict(justification const & j) { m_conflict = j; } void reset_conflict() { m_conflict = optional(); lean_assert(!in_conflict()); } expr mk_local_for(expr const & b) { return mk_local(m_ngen.next(), binding_name(b), binding_domain(b), binding_info(b)); } /** \brief Update occurrence index with entry m -> cidx, where \c m is the name of a metavariable, and \c cidx is the index of a constraint that contains \c m. */ void add_mvar_occ(name const & m, unsigned cidx) { cnstr_idx_set s; auto it = m_mvar_occs.find(m); if (it) s = *it; if (!s.contains(cidx)) { s.insert(cidx); m_mvar_occs.insert(m, s); } } void add_meta_occ(expr const & m, unsigned cidx) { lean_assert(is_meta(m)); add_mvar_occ(mlocal_name(get_app_fn(m)), cidx); } void add_meta_occs(expr const & e, unsigned cidx) { if (has_expr_metavar(e)) { for_each(e, [&](expr const & e, unsigned) { if (is_meta(e)) { add_meta_occ(e, cidx); return false; } if (is_local(e)) return false; return has_expr_metavar(e); }); } } /** \brief Add constraint to the constraint queue */ unsigned add_cnstr(constraint const & c, cnstr_group g) { unsigned cidx = m_next_cidx + get_group_first_index(g); m_cnstrs.insert(cnstr(c, cidx)); m_next_cidx++; return cidx; } /** \brief Check if \c t1 and \c t2 are definitionally equal, if they are not, set a conflict with justification \c j \remark If relax is true then opaque definitions from the main module are treated as transparent. */ bool is_def_eq(expr const & t1, expr const & t2, justification const & j, bool relax) { if (m_tc[relax]->is_def_eq(t1, t2, j)) { return true; } else { set_conflict(j); return false; } } /** \brief Assign \c v to metavariable \c m with justification \c j. The type of v and m are inferred, and is_def_eq is invoked. Any constraint that contains \c m is revisited. \remark If relax is true then opaque definitions from the main module are treated as transparent. */ bool assign(expr const & m, expr const & v, justification const & j, bool relax) { lean_assert(is_metavar(m)); m_subst.assign(m, v, j); expr m_type = mlocal_type(m); expr v_type; try { v_type = m_tc[relax]->infer(v); } catch (kernel_exception & e) { set_conflict(j); return false; } if (in_conflict()) return false; if (!is_def_eq(m_type, v_type, j, relax)) return false; auto it = m_mvar_occs.find(mlocal_name(m)); if (it) { cnstr_idx_set s = *it; m_mvar_occs.erase(mlocal_name(m)); s.for_each([&](unsigned cidx) { process_constraint_cidx(cidx); }); return !in_conflict(); } else { return true; } } /** \brief Assign \c v to universe metavariable \c m with justification \c j. Any constraint that contains \c m is revisted. */ bool assign(level const & m, level const & v, justification const & j) { lean_assert(is_meta(m)); m_subst.assign(m, v, j); return true; } enum status { Solved, Failed, Continue }; /** \brief Process constraints of the form lhs =?= rhs where lhs is of the form ?m or (?m l_1 .... l_n), where all \c l_i are distinct local variables. In this case, the method returns Solved, if the method assign succeeds. The method returns \c Failed if \c rhs contains ?m, or it contains a local constant not in {l_1, ..., l_n}. Otherwise, it returns \c Continue. */ status process_metavar_eq(expr const & lhs, expr const & rhs, justification const & j, bool relax) { if (!is_meta(lhs)) return Continue; buffer locals; auto m = is_simple_meta(lhs, locals); if (!m || is_meta(rhs)) return Continue; switch (occurs_context_check(m_subst, rhs, *m, locals)) { case l_false: set_conflict(j); return Failed; case l_undef: return Continue; case l_true: lean_assert(!m_subst.is_assigned(*m)); if (assign(*m, lambda_abstract_locals(rhs, locals), j, relax)) { return Solved; } else { return Failed; } } lean_unreachable(); // LCOV_EXCL_LINE } optional is_delta(expr const & e) { return ::lean::is_delta(m_env, e); } /** \brief Return true if lhs and rhs are of the form (f ...) where f can be expanded */ bool is_eq_deltas(expr const & lhs, expr const & rhs) { auto lhs_d = is_delta(lhs); auto rhs_d = is_delta(rhs); return lhs_d && rhs_d && is_eqp(*lhs_d, *rhs_d); } /** \brief Return true if the constraint is of the form (f ...) =?= (f ...), where f can be expanded. */ bool is_delta_cnstr(constraint const & c) { return is_eq_cnstr(c) && is_eq_deltas(cnstr_lhs_expr(c), cnstr_rhs_expr(c)); } std::pair instantiate_metavars(constraint const & c) { if (is_eq_cnstr(c)) { auto lhs_jst = m_subst.instantiate_metavars(cnstr_lhs_expr(c)); auto rhs_jst = m_subst.instantiate_metavars(cnstr_rhs_expr(c)); expr lhs = lhs_jst.first; expr rhs = rhs_jst.first; if (lhs != cnstr_lhs_expr(c) || rhs != cnstr_rhs_expr(c)) { return mk_pair(mk_eq_cnstr(lhs, rhs, mk_composite1(mk_composite1(c.get_justification(), lhs_jst.second), rhs_jst.second), relax_main_opaque(c)), true); } } else if (is_level_eq_cnstr(c)) { auto lhs_jst = m_subst.instantiate_metavars(cnstr_lhs_level(c)); auto rhs_jst = m_subst.instantiate_metavars(cnstr_rhs_level(c)); level lhs = lhs_jst.first; level rhs = rhs_jst.first; if (lhs != cnstr_lhs_level(c) || rhs != cnstr_rhs_level(c)) { return mk_pair(mk_level_eq_cnstr(lhs, rhs, mk_composite1(mk_composite1(c.get_justification(), lhs_jst.second), rhs_jst.second)), true); } } return mk_pair(c, false); } status process_eq_constraint_core(constraint const & c) { expr const & lhs = cnstr_lhs_expr(c); expr const & rhs = cnstr_rhs_expr(c); justification const & jst = c.get_justification(); bool relax = relax_main_opaque(c); if (lhs == rhs) return Solved; // trivial constraint // Update justification using the justification of the instantiated metavariables if (!has_metavar(lhs) && !has_metavar(rhs)) { return is_def_eq(lhs, rhs, jst, relax) ? Solved : Failed; } // Handle higher-order pattern matching. status st = process_metavar_eq(lhs, rhs, jst, relax); if (st != Continue) return st; st = process_metavar_eq(rhs, lhs, jst, relax); if (st != Continue) return st; return Continue; } expr instantiate_meta(expr e, justification & j) { while (true) { expr const & f = get_app_fn(e); if (!is_metavar(f)) return e; name const & f_name = mlocal_name(f); auto f_value = m_subst.get_expr(f_name); if (!f_value) return e; j = mk_composite1(j, m_subst.get_expr_jst(f_name)); buffer args; get_app_rev_args(e, args); e = apply_beta(*f_value, args.size(), args.data()); } } expr instantiate_meta_args(expr const & e, justification & j) { if (!is_app(e)) return e; buffer args; bool modified = false; expr const & f = get_app_rev_args(e, args); unsigned i = args.size(); while (i > 0) { --i; expr new_arg = instantiate_meta(args[i], j); if (new_arg != args[i]) { modified = true; args[i] = new_arg; } } if (!modified) return e; return mk_rev_app(f, args.size(), args.data()); } status instantiate_eq_cnstr(constraint const & c) { justification j = c.get_justification(); expr lhs = instantiate_meta(cnstr_lhs_expr(c), j); expr rhs = instantiate_meta(cnstr_rhs_expr(c), j); if (lhs != cnstr_lhs_expr(c) || rhs != cnstr_rhs_expr(c)) return is_def_eq(lhs, rhs, j, relax_main_opaque(c)) ? Solved : Failed; lhs = instantiate_meta_args(lhs, j); rhs = instantiate_meta_args(rhs, j); if (lhs != cnstr_lhs_expr(c) || rhs != cnstr_rhs_expr(c)) return is_def_eq(lhs, rhs, j, relax_main_opaque(c)) ? Solved : Failed; return Continue; } /** \brief Process an equality constraints. */ bool process_eq_constraint(constraint const & c) { lean_assert(is_eq_cnstr(c)); // instantiate assigned metavariables status st = instantiate_eq_cnstr(c); if (st != Continue) return st == Solved; st = process_eq_constraint_core(c); if (st != Continue) return st == Solved; expr const & lhs = cnstr_lhs_expr(c); expr const & rhs = cnstr_rhs_expr(c); bool relax = relax_main_opaque(c); if (is_eq_deltas(lhs, rhs)) { // we need to create a backtracking point for this one add_cnstr(c, cnstr_group::Basic); } else if (is_meta(lhs) && is_meta(rhs)) { // flex-flex constraints are delayed the most. unsigned cidx = add_cnstr(c, cnstr_group::FlexFlex); add_meta_occ(lhs, cidx); add_meta_occ(rhs, cidx); } else if (m_plugin->delay_constraint(*m_tc[relax], c)) { unsigned cidx = add_cnstr(c, cnstr_group::PluginDelayed); add_meta_occs(lhs, cidx); add_meta_occs(rhs, cidx); } else if (is_meta(lhs)) { // flex-rigid constraints are delayed. unsigned cidx = add_cnstr(c, cnstr_group::FlexRigid); add_meta_occ(lhs, cidx); } else if (is_meta(rhs)) { // flex-rigid constraints are delayed. unsigned cidx = add_cnstr(c, cnstr_group::FlexRigid); add_meta_occ(rhs, cidx); } else { // this constraints require the unifier plugin to be solved add_cnstr(c, cnstr_group::Basic); } return true; } /** \brief Process a universe level constraints of the form ?m =?= rhs. It fails if rhs contains \c ?m and is definitely bigger than \c ?m. TODO(Leo): we should improve this method in the future. It is doing only very basic things. */ status process_metavar_eq(level const & lhs, level const & rhs, justification const & j) { if (!is_meta(lhs)) return Continue; bool contains = occurs_meta(lhs, rhs); if (contains) { if (is_succ(rhs)) return Failed; else return Continue; } lean_assert(!m_subst.is_assigned(lhs)); if (assign(lhs, rhs, j)) { return Solved; } else { return Failed; } } /** \brief Process a universe level contraints. */ bool process_level_eq_constraint(constraint const & c) { lean_assert(is_level_eq_cnstr(c)); // instantiate assigned metavariables constraint new_c = instantiate_metavars(c).first; level lhs = cnstr_lhs_level(new_c); level rhs = cnstr_rhs_level(new_c); justification jst = new_c.get_justification(); // normalize lhs and rhs lhs = normalize(lhs); rhs = normalize(rhs); // eliminate outermost succs while (is_succ(lhs) && is_succ(rhs)) { lhs = succ_of(lhs); rhs = succ_of(rhs); } if (lhs == rhs) return true; // trivial constraint if (!has_meta(lhs) && !has_meta(rhs)) { set_conflict(jst); return false; // trivial failure } status st = process_metavar_eq(lhs, rhs, jst); if (st != Continue) return st == Solved; st = process_metavar_eq(rhs, lhs, jst); if (st != Continue) return st == Solved; add_cnstr(new_c, cnstr_group::FlexRigid); return true; } /** \brief Process the given constraint \c c. "Easy" constraints are solved, and the remaining ones are added to the constraint queue m_cnstrs. By "easy", see the methods #process_eq_constraint and #process_level_eq_constraint. */ bool process_constraint(constraint const & c) { if (in_conflict()) return false; check_system(); switch (c.kind()) { case constraint_kind::Choice: // Choice constraints are never considered easy. add_cnstr(c, get_choice_cnstr_group(c)); return true; case constraint_kind::Eq: return process_eq_constraint(c); case constraint_kind::LevelEq: return process_level_eq_constraint(c); } lean_unreachable(); // LCOV_EXCL_LINE } /** \brief Process constraint with index \c cidx. The constraint is removed from the constraint queue, and the method #process_constraint is invoked. */ bool process_constraint_cidx(unsigned cidx) { if (in_conflict()) return false; cnstr c(g_dont_care_cnstr, cidx); if (auto it = m_cnstrs.find(c)) { constraint c2 = it->first; m_cnstrs.erase(c); return process_constraint(c2); } return true; } void add_case_split(std::unique_ptr && cs) { m_case_splits.push_back(std::move(cs)); } // This method is used only for debugging purposes. void display(std::ostream & out, justification const & j, unsigned indent = 0) { for (unsigned i = 0; i < indent; i++) out << " "; out << j.pp(mk_simple_formatter_factory()(m_env, options()), nullptr, m_subst) << "\n"; if (j.is_composite()) { display(out, composite_child1(j), indent+2); display(out, composite_child2(j), indent+2); } } void pop_case_split() { m_tc[0]->pop(); m_tc[1]->pop(); m_case_splits.pop_back(); } bool resolve_conflict() { lean_assert(in_conflict()); while (!m_case_splits.empty()) { justification conflict = *m_conflict; std::unique_ptr & d = m_case_splits.back(); if (depends_on(conflict, d->m_assumption_idx)) { d->m_failed_justifications = mk_composite1(d->m_failed_justifications, conflict); if (d->next(*this)) { reset_conflict(); return true; } } else { pop_case_split(); } } return false; } optional failure() { lean_assert(in_conflict()); if (m_use_exception) throw unifier_exception(*m_conflict, m_subst); else return optional(); } /** \brief Process constraints in \c cs, and append justification \c j to them. */ bool process_constraints(constraints const & cs, justification const & j) { for (constraint const & c : cs) process_constraint(update_justification(c, mk_composite1(c.get_justification(), j))); return !in_conflict(); } bool next_lazy_constraints_case_split(lazy_constraints_case_split & cs) { auto r = cs.m_tail.pull(); if (r) { cs.restore_state(*this); lean_assert(!in_conflict()); cs.m_tail = r->second; return process_constraints(r->first, mk_composite1(cs.get_jst(), mk_assumption_justification(cs.m_assumption_idx))); } else { // update conflict update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications)); pop_case_split(); return false; } } bool process_lazy_constraints(lazy_list const & l, justification const & j) { auto r = l.pull(); if (r) { if (r->second.is_nil()) { // there is only one alternative return process_constraints(r->first, j); } else { justification a = mk_assumption_justification(m_next_assumption_idx); add_case_split(std::unique_ptr(new lazy_constraints_case_split(*this, j, r->second))); return process_constraints(r->first, mk_composite1(j, a)); } } else { set_conflict(j); return false; } } /** \brief Given a constraint of the form f a_1 ... a_n =?= f b_1 ... b_n Return singleton stream with the possible solution a_i =?= b_i If c is not of the expected form, then return the empty stream. */ lazy_list process_const_const_cnstr(constraint const & c) { if (!is_eq_cnstr(c)) return lazy_list(); expr const & lhs = cnstr_lhs_expr(c); expr const & rhs = cnstr_rhs_expr(c); expr const & f_lhs = get_app_fn(lhs); expr const & f_rhs = get_app_fn(rhs); if (!is_constant(f_lhs) || !is_constant(f_rhs) || const_name(f_lhs) != const_name(f_rhs)) return lazy_list(); justification const & j = c.get_justification(); buffer cs; bool relax = relax_main_opaque(c); lean_assert(!m_tc[relax]->next_cnstr()); if (!m_tc[relax]->is_def_eq(f_lhs, f_rhs, j, cs)) return lazy_list(); buffer args_lhs, args_rhs; get_app_args(lhs, args_lhs); get_app_args(rhs, args_rhs); if (args_lhs.size() != args_rhs.size()) return lazy_list(); lean_assert(!m_tc[relax]->next_cnstr()); for (unsigned i = 0; i < args_lhs.size(); i++) if (!m_tc[relax]->is_def_eq(args_lhs[i], args_rhs[i], j, cs)) return lazy_list(); return lazy_list(to_list(cs.begin(), cs.end())); } bool process_plugin_constraint(constraint const & c) { bool relax = relax_main_opaque(c); lean_assert(!is_choice_cnstr(c)); lean_assert(!m_tc[relax]->next_cnstr()); lazy_list alts = m_plugin->solve(*m_tc[relax], c, m_ngen.mk_child()); lean_assert(!m_tc[relax]->next_cnstr()); alts = append(alts, process_const_const_cnstr(c)); return process_lazy_constraints(alts, c.get_justification()); } bool process_choice_constraint(constraint const & c) { lean_assert(is_choice_cnstr(c)); expr const & m = cnstr_expr(c); choice_fn const & fn = cnstr_choice_fn(c); expr m_type; bool relax = relax_main_opaque(c); try { m_type = m_tc[relax]->infer(m); } catch (kernel_exception &) { set_conflict(c.get_justification()); return false; } auto m_type_jst = m_subst.instantiate_metavars(m_type); lazy_list alts = fn(m, m_type_jst.first, m_subst, m_ngen.mk_child()); return process_lazy_constraints(alts, mk_composite1(c.get_justification(), m_type_jst.second)); } bool next_simple_case_split(simple_case_split & cs) { if (!is_nil(cs.m_tail)) { cs.restore_state(*this); lean_assert(!in_conflict()); constraints c = head(cs.m_tail); cs.m_tail = tail(cs.m_tail); return process_constraints(c, mk_composite1(cs.get_jst(), mk_assumption_justification(cs.m_assumption_idx))); } else { // update conflict update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications)); pop_case_split(); return false; } } /** \brief Solve constraints of the form (f a_1 ... a_n) =?= (f b_1 ... b_n) where f can be expanded. We consider two possible solutions: 1) a_1 =?= b_1, ..., a_n =?= b_n 2) t =?= s, where t and s are the terms we get after expanding f */ bool process_delta(constraint const & c) { lean_assert(is_delta_cnstr(c)); expr const & lhs = cnstr_lhs_expr(c); expr const & rhs = cnstr_rhs_expr(c); buffer lhs_args, rhs_args; justification j = c.get_justification(); expr lhs_fn = get_app_rev_args(lhs, lhs_args); expr rhs_fn = get_app_rev_args(rhs, rhs_args); declaration d = *m_env.find(const_name(lhs_fn)); levels lhs_lvls = const_levels(lhs_fn); levels rhs_lvls = const_levels(lhs_fn); if (lhs_args.size() != rhs_args.size() || length(lhs_lvls) != length(rhs_lvls) || length(d.get_univ_params()) != length(lhs_lvls)) { // the constraint is not well-formed, this can happen when users are abusing the API return false; } justification a; // add case_split for t =?= s expr lhs_fn_val = instantiate_univ_params(d.get_value(), d.get_univ_params(), const_levels(lhs_fn)); expr rhs_fn_val = instantiate_univ_params(d.get_value(), d.get_univ_params(), const_levels(rhs_fn)); expr t = apply_beta(lhs_fn_val, lhs_args.size(), lhs_args.data()); expr s = apply_beta(rhs_fn_val, rhs_args.size(), rhs_args.data()); bool relax = relax_main_opaque(c); buffer cs2; if (m_tc[relax]->is_def_eq(t, s, j, cs2)) { // create a case split a = mk_assumption_justification(m_next_assumption_idx); add_case_split(std::unique_ptr(new simple_case_split(*this, j, to_list(cs2.begin(), cs2.end())))); } // process first case justification new_j = mk_composite1(j, a); while (!is_nil(lhs_lvls)) { level lhs = head(lhs_lvls); level rhs = head(rhs_lvls); if (!process_constraint(mk_level_eq_cnstr(lhs, rhs, new_j))) return false; lhs_lvls = tail(lhs_lvls); rhs_lvls = tail(rhs_lvls); } unsigned i = lhs_args.size(); while (i > 0) { --i; if (!is_def_eq(lhs_args[i], rhs_args[i], new_j, relax)) return false; } return true; } /** \brief Return true iff \c c is a flex-rigid constraint. */ static bool is_flex_rigid(constraint const & c) { if (!is_eq_cnstr(c)) return false; bool is_lhs_meta = is_meta(cnstr_lhs_expr(c)); bool is_rhs_meta = is_meta(cnstr_rhs_expr(c)); return is_lhs_meta != is_rhs_meta; } /** \brief Return true iff \c c is a flex-flex constraint */ static bool is_flex_flex(constraint const & c) { return is_eq_cnstr(c) && is_meta(cnstr_lhs_expr(c)) && is_meta(cnstr_rhs_expr(c)); } /** \brief Given t Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n] return fun (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), v[x_1, ... x_n] \remark v has free variables. */ expr mk_lambda_for(expr const & t, expr const & v) { if (is_pi(t)) { return mk_lambda(binding_name(t), binding_domain(t), mk_lambda_for(binding_body(t), v), binding_info(t)); } else { return v; } } /** \see ensure_sufficient_args */ optional ensure_sufficient_args_core(expr mtype, unsigned i, buffer const & margs, bool relax) { if (i == margs.size()) return some_expr(mtype); mtype = m_tc[relax]->ensure_pi(mtype); try { if (!m_tc[relax]->is_def_eq(binding_domain(mtype), m_tc[relax]->infer(margs[i]))) return none_expr(); } catch (kernel_exception &) { return none_expr(); } expr local = mk_local_for(mtype); expr body = instantiate(binding_body(mtype), local); auto new_body = ensure_sufficient_args_core(body, i+1, margs, relax); if (!new_body) return none_expr(); return some_expr(Pi(local, *new_body)); } /** \brief Make sure mtype is a Pi of size at least margs.size(). If it is not, we use ensure_pi and (potentially) add new constaints to enforce it. */ optional ensure_sufficient_args(expr const & mtype, buffer const & margs, buffer & cs, justification const & j, bool relax) { expr t = mtype; unsigned num = 0; while (is_pi(t)) { num++; t = binding_body(t); } if (num == margs.size()) return some_expr(mtype);; lean_assert(!m_tc[relax]->next_cnstr()); // make sure there are no pending constraints // We must create a scope to make sure no constraints "leak" into the current state. type_checker::scope scope(*m_tc[relax]); auto new_mtype = ensure_sufficient_args_core(mtype, 0, margs, relax); if (!new_mtype) return none_expr(); while (auto c = m_tc[relax]->next_cnstr()) cs.push_back(update_justification(*c, mk_composite1(c->get_justification(), j))); return new_mtype; } /** \see mk_flex_rigid_app_cnstrs When using "imitation" for solving a constraint ?m l_1 ... l_k =?= f a_1 ... a_n We say argument a_i is "easy" if 1) it is a local constant 2) there is only one l_j equal to a_i. 3) none of the l_j's is of the form (?m ...) In our experiments, the vast majority (> 2/3 of all cases) of the arguments are easy. margs contains l_1 ... l_k arg is the argument we are testing Result: none if it is not an easy argument, and variable #k-i-1 if it is easy. The variable is the "solution". */ optional is_easy_flex_rigid_arg(buffer const & margs, expr const & arg) { if (!is_local(arg)) return none_expr(); optional v; unsigned num_margs = margs.size(); for (unsigned j = 0; j < num_margs; j++) { if (is_meta(margs[j])) return none_expr(); if (is_local(margs[j]) && mlocal_name(arg) == mlocal_name(margs[j])) { if (v) return none_expr(); // failed, there is more than one possibility v = mk_var(num_margs - j - 1); } } return v; } /** \brief Given m := a metavariable ?m margs := [a_1 ... a_k] rhs := (g b_1 ... b_n) Then create the constraints (?m_1 a_1 ... a_k) =?= b_1 ... (?m_n a_1 ... a_k) =?= b_n ?m =?= fun (x_1 ... x_k), f (?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k) Remark: we try to minimize the number of constraints (?m_i a_1 ... a_k) =?= b_i by detecting "easy" cases that can be solved immediately. See \c is_easy_flex_rigid_arg Remark: The term f is: - g (if g is a constant), OR - variable (if g is a local constant equal to a_i) */ void mk_flex_rigid_app_cnstrs(expr const & m, buffer const & margs, expr const & f, expr const & rhs, justification const & j, buffer & alts, bool relax) { lean_assert(is_metavar(m)); lean_assert(is_app(rhs)); lean_assert(is_constant(f) || is_var(f)); buffer cs; expr mtype = mlocal_type(m); auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax); if (!new_mtype) return; mtype = *new_mtype; buffer rargs; get_app_args(rhs, rargs); buffer sargs; for (expr const & rarg : rargs) { if (auto v = is_easy_flex_rigid_arg(margs, rarg)) { sargs.push_back(*v); } else { expr maux = mk_aux_metavar_for(m_ngen, mtype); cs.push_back(mk_eq_cnstr(mk_app(maux, margs), rarg, j, relax)); sargs.push_back(mk_app_vars(maux, margs.size())); } } expr v = mk_app(f, sargs); v = mk_lambda_for(mtype, v); cs.push_back(mk_eq_cnstr(m, v, j, relax)); alts.push_back(to_list(cs.begin(), cs.end())); } /** \brief Given m := a metavariable ?m margs := [a_1 ... a_k] rhs := (fun/Pi (y : A), B y) Then create the constraints (?m_1 a_1 ... a_k) =?= A (?m_2 a_1 ... a_k l) =?= B l ?m =?= fun (x_1 ... x_k), fun/Pi (y : ?m_1 x_1 ... x_k), ?m_2 x_1 ... x_k y where l is a fresh local constant. */ void mk_bindings_imitation(expr const & m, buffer const & margs, expr const & rhs, justification const & j, buffer & alts, bool relax) { lean_assert(is_metavar(m)); lean_assert(is_binding(rhs)); buffer cs; expr mtype = mlocal_type(m); auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax); if (!new_mtype) return; mtype = *new_mtype; expr maux1 = mk_aux_metavar_for(m_ngen, mtype); cs.push_back(mk_eq_cnstr(mk_app(maux1, margs), binding_domain(rhs), j, relax)); expr dontcare; expr tmp_pi = mk_pi(binding_name(rhs), mk_app_vars(maux1, margs.size()), dontcare); // trick for "extending" the context expr mtype2 = replace_range(mtype, tmp_pi); // trick for "extending" the context expr maux2 = mk_aux_metavar_for(m_ngen, mtype2); expr new_local = mk_local_for(rhs); cs.push_back(mk_eq_cnstr(mk_app(mk_app(maux2, margs), new_local), instantiate(binding_body(rhs), new_local), j, relax)); expr v = update_binding(rhs, mk_app_vars(maux1, margs.size()), mk_app_vars(maux2, margs.size() + 1)); v = mk_lambda_for(mtype, v); cs.push_back(mk_eq_cnstr(m, v, j, relax)); alts.push_back(to_list(cs.begin(), cs.end())); } /** \brief Given m := a metavariable ?m rhs := sort, constant Then solve (?m a_1 ... a_k) =?= rhs, by returning the constraint ?m =?= fun (x1 ... x_k), rhs */ void mk_simple_imitation(expr const & m, expr const & rhs, justification const & j, buffer & alts, bool relax) { lean_assert(is_metavar(m)); lean_assert(is_sort(rhs) || is_constant(rhs)); expr const & mtype = mlocal_type(m); buffer cs; cs.push_back(mk_eq_cnstr(m, mk_lambda_for(mtype, rhs), j, relax)); alts.push_back(to_list(cs.begin(), cs.end())); } /** \brief Given m := a metavariable ?m margs := [a_1 ... a_k] rhs := M(b_1 ... b_n) where M is a macro with arguments b_1 ... b_n Then create the constraints (?m_1 a_1 ... a_k) =?= b_1 ... (?m_n a_1 ... a_k) =?= b_n ?m =?= fun (x_1 ... x_k), M((?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k)) */ void mk_macro_imitation(expr const & m, buffer const & margs, expr const & rhs, justification const & j, buffer & alts, bool relax) { lean_assert(is_metavar(m)); lean_assert(is_macro(rhs)); buffer cs; expr mtype = mlocal_type(m); auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax); if (!new_mtype) return; mtype = *new_mtype; // create an auxiliary metavariable for each macro argument buffer sargs; for (unsigned i = 0; i < macro_num_args(rhs); i++) { expr maux = mk_aux_metavar_for(m_ngen, mtype); cs.push_back(mk_eq_cnstr(mk_app(maux, margs), macro_arg(rhs, i), j, relax)); sargs.push_back(mk_app_vars(maux, margs.size())); } expr v = mk_macro(macro_def(rhs), sargs.size(), sargs.data()); v = mk_lambda_for(mtype, v); cs.push_back(mk_eq_cnstr(m, v, j, relax)); alts.push_back(to_list(cs.begin(), cs.end())); } /** Given, m := a metavariable ?m margs := [a_1 ... a_k] We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple nonlocal i-th projection" when 1) rhs is not a local constant 2) is_def_eq(a_i, rhs) does not fail In this case, we add a_i =?= rhs ?m =?= fun x_1 ... x_k, x_i to alts as a possible solution. */ void mk_simple_nonlocal_projection(expr const & m, buffer const & margs, unsigned i, expr const & rhs, justification const & j, buffer & alts, bool relax) { expr const & mtype = mlocal_type(m); unsigned vidx = margs.size() - i - 1; expr const & marg = margs[i]; buffer cs; if (auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax)) { // Remark: we should not use mk_eq_cnstr(marg, rhs, j) since is_def_eq may be able to reduce them. // The unifier assumes the eq constraints are reduced. if (m_tc[relax]->is_def_eq(marg, rhs, j, cs)) { expr v = mk_lambda_for(*new_mtype, mk_var(vidx)); cs.push_back(mk_eq_cnstr(m, v, j, relax)); alts.push_back(to_list(cs.begin(), cs.end())); } } } /** Given, m := a metavariable ?m margs := [a_1 ... a_k] We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple projections" when If (rhs and a_i are *not* local constants) OR (rhs is a local constant and a_i is a metavariable application), then we add the constraints a_i =?= rhs ?m =?= fun x_1 ... x_k, x_i to alts as a possible solution. If rhs is a local constant and a_i == rhs, then we add the constraint ?m =?= fun x_1 ... x_k, x_i to alts as a possible solution when a_i is the same local constant or a metavariable application */ void mk_simple_projections(expr const & m, buffer const & margs, expr const & rhs, justification const & j, buffer & alts, bool relax) { lean_assert(is_metavar(m)); lean_assert(!is_meta(rhs)); expr const & mtype = mlocal_type(m); unsigned i = margs.size(); while (i > 0) { unsigned vidx = margs.size() - i; --i; expr const & marg = margs[i]; if ((!is_local(marg) && !is_local(rhs)) || (is_meta(marg) && is_local(rhs))) { // if rhs is not local, then we only add projections for the nonlocal arguments of lhs mk_simple_nonlocal_projection(m, margs, i, rhs, j, alts, relax); } else if (is_local(marg) && is_local(rhs) && mlocal_name(marg) == mlocal_name(rhs)) { // if the argument is local, and rhs is equal to it, then we also add a projection buffer cs; if (auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax)) { expr v = mk_lambda_for(*new_mtype, mk_var(vidx)); cs.push_back(mk_eq_cnstr(m, v, j, relax)); alts.push_back(to_list(cs.begin(), cs.end())); } } } } /** \brief Process a flex rigid constraint */ bool process_flex_rigid(expr const & lhs, expr const & rhs, justification const & j, bool relax) { lean_assert(is_meta(lhs)); lean_assert(!is_meta(rhs)); buffer margs; expr m = get_app_args(lhs, margs); for (expr & marg : margs) { // Make sure that if marg is reducible to a local constant, then it is replaced with it. // We need that because of the optimization based on is_easy_flex_rigid_arg if (!is_local(marg)) { expr new_marg = m_tc[relax]->whnf(marg); if (is_local(new_marg)) marg = new_marg; } } buffer alts; switch (rhs.kind()) { case expr_kind::Var: case expr_kind::Meta: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Local: mk_simple_projections(m, margs, rhs, j, alts, relax); break; case expr_kind::Sort: case expr_kind::Constant: mk_simple_projections(m, margs, rhs, j, alts, relax); mk_simple_imitation(m, rhs, j, alts, relax); break; case expr_kind::Pi: case expr_kind::Lambda: mk_simple_projections(m, margs, rhs, j, alts, relax); mk_bindings_imitation(m, margs, rhs, j, alts, relax); break; case expr_kind::Macro: mk_simple_projections(m, margs, rhs, j, alts, relax); mk_macro_imitation(m, margs, rhs, j, alts, relax); break; case expr_kind::App: { expr const & f = get_app_fn(rhs); if (is_local(f)) { unsigned i = margs.size(); while (i > 0) { unsigned vidx = margs.size() - i; --i; expr const & marg = margs[i]; if (is_local(marg) && mlocal_name(marg) == mlocal_name(f)) mk_flex_rigid_app_cnstrs(m, margs, mk_var(vidx), rhs, j, alts, relax); else mk_simple_nonlocal_projection(m, margs, i, rhs, j, alts, relax); } } else if (is_constant(f)) { mk_simple_projections(m, margs, rhs, j, alts, relax); mk_flex_rigid_app_cnstrs(m, margs, f, rhs, j, alts, relax); } else { expr new_rhs = m_tc[relax]->whnf(rhs); lean_assert(new_rhs != rhs); return is_def_eq(lhs, new_rhs, j, relax); } break; }} if (alts.empty()) { set_conflict(j); return false; } else if (alts.size() == 1) { // we don't need to create a backtracking point return process_constraints(alts[0], justification()); } else { justification a = mk_assumption_justification(m_next_assumption_idx); add_case_split(std::unique_ptr(new simple_case_split(*this, j, to_list(alts.begin() + 1, alts.end())))); return process_constraints(alts[0], a); } } /** \brief Process a flex rigid constraint */ bool process_flex_rigid(constraint const & c) { lean_assert(is_flex_rigid(c)); expr lhs = cnstr_lhs_expr(c); expr rhs = cnstr_rhs_expr(c); bool relax = relax_main_opaque(c); if (is_meta(lhs)) return process_flex_rigid(lhs, rhs, c.get_justification(), relax); else return process_flex_rigid(rhs, lhs, c.get_justification(), relax); } bool process_flex_flex(constraint const & c) { expr const & lhs = cnstr_lhs_expr(c); expr const & rhs = cnstr_rhs_expr(c); // We ignore almost all flex-flex constraints. // We just handle flex_flex "first-order" case // ?M_1 l_1 ... l_k =?= ?M_2 l_1 ... l_k if (!is_simple_meta(lhs) || !is_simple_meta(rhs)) return true; buffer lhs_args, rhs_args; expr ml = get_app_args(lhs, lhs_args); expr mr = get_app_args(rhs, rhs_args); if (ml == mr || lhs_args.size() != rhs_args.size()) return true; lean_assert(!m_subst.is_assigned(ml)); lean_assert(!m_subst.is_assigned(mr)); unsigned i = 0; for (; i < lhs_args.size(); i++) if (mlocal_name(lhs_args[i]) != mlocal_name(rhs_args[i])) break; if (i == lhs_args.size()) return assign(ml, mr, c.get_justification(), relax_main_opaque(c)); return true; } void consume_tc_cnstrs() { for (unsigned i = 0; i < 2; i++) { while (true) { if (in_conflict()) return; if (auto c = m_tc[i]->next_cnstr()) { process_constraint(*c); } else { break; } } } } /** \brief Process the following constraints 1. (max l1 l2) =?= 0 OR solution: l1 =?= 0, l2 =?= 0 2. (imax l1 l2) =?= 0 solution: l2 =?= 0 */ status try_level_eq_zero(level const & lhs, level const & rhs, justification const & j) { if (!is_zero(rhs)) return Continue; if (is_max(lhs)) { if (process_constraint(mk_level_eq_cnstr(max_lhs(lhs), rhs, j)) && process_constraint(mk_level_eq_cnstr(max_rhs(lhs), rhs, j))) return Solved; else return Failed; } else if (is_imax(lhs)) { return process_constraint(mk_level_eq_cnstr(imax_rhs(lhs), rhs, j)) ? Solved : Failed; } else { return Continue; } } status try_level_eq_zero(constraint const & c) { lean_assert(is_level_eq_cnstr(c)); level const & lhs = cnstr_lhs_level(c); level const & rhs = cnstr_rhs_level(c); justification const & j = c.get_justification(); status st = try_level_eq_zero(lhs, rhs, j); if (st != Continue) return st; return try_level_eq_zero(rhs, lhs, j); } /** \brief Process the next constraint in the constraint queue m_cnstrs */ bool process_next() { lean_assert(!m_cnstrs.empty()); constraint c = m_cnstrs.min()->first; m_cnstrs.erase_min(); if (is_choice_cnstr(c)) { return process_choice_constraint(c); } else { auto r = instantiate_metavars(c); c = r.first; lean_assert(!m_tc[0]->next_cnstr()); lean_assert(!m_tc[1]->next_cnstr()); bool modified = r.second; if (is_level_eq_cnstr(c)) { if (modified) return process_constraint(c); status st = try_level_eq_zero(c); if (st != Continue) return st == Solved; else return process_plugin_constraint(c); } else { lean_assert(is_eq_cnstr(c)); if (is_delta_cnstr(c)) { return process_delta(c); } else if (modified) { return is_def_eq(cnstr_lhs_expr(c), cnstr_rhs_expr(c), c.get_justification(), relax_main_opaque(c)); } else if (is_flex_rigid(c)) { return process_flex_rigid(c); } else if (is_flex_flex(c)) { return process_flex_flex(c); } else { return process_plugin_constraint(c); } } } } /** \brief Return true if unifier may be able to produce more solutions */ bool more_solutions() const { return !in_conflict() || !m_case_splits.empty(); } /** \brief Produce the next solution */ optional next() { if (!more_solutions()) return failure(); if (!m_first && !m_case_splits.empty()) { justification all_assumptions; for (auto const & cs : m_case_splits) all_assumptions = mk_composite1(all_assumptions, mk_assumption_justification(cs->m_assumption_idx)); set_conflict(all_assumptions); if (!resolve_conflict()) return failure(); } else if (m_first) { m_first = false; } else { // This is not the first run, and there are no case-splits. // We don't throw an exception since there are no more solutions. return optional(); } while (true) { consume_tc_cnstrs(); if (!in_conflict()) { if (m_cnstrs.empty()) break; process_next(); } if (in_conflict() && !resolve_conflict()) return failure(); } lean_assert(!in_conflict()); lean_assert(m_cnstrs.empty()); substitution s = m_subst; s.forget_justifications(); return optional(s); } }; lazy_list unify(std::shared_ptr u) { if (!u->more_solutions()) { u->failure(); // make sure exception is thrown if u->m_use_exception is true return lazy_list(); } else { return mk_lazy_list([=]() { auto s = u->next(); if (s) return some(mk_pair(*s, unify(u))); else return lazy_list::maybe_pair(); }); } } lazy_list unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen, bool use_exception, unsigned max_steps) { return unify(std::make_shared(env, num_cs, cs, ngen, substitution(), use_exception, max_steps)); } lazy_list unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen, bool use_exception, options const & o) { return unify(env, num_cs, cs, ngen, use_exception, get_unifier_max_steps(o)); } lazy_list unify(environment const & env, expr const & lhs, expr const & rhs, name_generator const & ngen, bool relax, substitution const & s, unsigned max_steps) { substitution new_s = s; expr _lhs = new_s.instantiate(lhs); expr _rhs = new_s.instantiate(rhs); auto u = std::make_shared(env, 0, nullptr, ngen, new_s, false, max_steps); if (!u->m_tc[relax]->is_def_eq(_lhs, _rhs)) return lazy_list(); else return unify(u); } lazy_list unify(environment const & env, expr const & lhs, expr const & rhs, name_generator const & ngen, bool relax, substitution const & s, options const & o) { return unify(env, lhs, rhs, ngen, relax, s, get_unifier_max_steps(o)); } static int unify_simple(lua_State * L) { int nargs = lua_gettop(L); unify_status r; if (nargs == 2) r = unify_simple(to_substitution(L, 1), to_constraint(L, 2)); else if (nargs == 3 && is_expr(L, 2)) r = unify_simple(to_substitution(L, 1), to_expr(L, 2), to_expr(L, 3), justification()); else if (nargs == 3 && is_level(L, 2)) r = unify_simple(to_substitution(L, 1), to_level(L, 2), to_level(L, 3), justification()); else if (is_expr(L, 2)) r = unify_simple(to_substitution(L, 1), to_expr(L, 2), to_expr(L, 3), to_justification(L, 4)); else r = unify_simple(to_substitution(L, 1), to_level(L, 2), to_level(L, 3), to_justification(L, 4)); return push_integer(L, static_cast(r)); } typedef lazy_list substitution_seq; DECL_UDATA(substitution_seq) static const struct luaL_Reg substitution_seq_m[] = { {"__gc", substitution_seq_gc}, {0, 0} }; static int substitution_seq_next(lua_State * L) { substitution_seq seq = to_substitution_seq(L, lua_upvalueindex(1)); substitution_seq::maybe_pair p; p = seq.pull(); if (p) { push_substitution_seq(L, p->second); lua_replace(L, lua_upvalueindex(1)); push_substitution(L, p->first); } else { lua_pushnil(L); } return 1; } static int push_substitution_seq_it(lua_State * L, substitution_seq const & seq) { push_substitution_seq(L, seq); lua_pushcclosure(L, &safe_function, 1); // create closure with 1 upvalue return 1; } static void to_constraint_buffer(lua_State * L, int idx, buffer & cs) { luaL_checktype(L, idx, LUA_TTABLE); lua_pushvalue(L, idx); // put table on top of the stack int n = objlen(L, idx); for (int i = 1; i <= n; i++) { lua_rawgeti(L, -1, i); cs.push_back(to_constraint(L, -1)); lua_pop(L, 1); } lua_pop(L, 1); } #if 0 static constraints to_constraints(lua_State * L, int idx) { buffer cs; to_constraint_buffer(L, idx, cs); return to_list(cs.begin(), cs.end()); } static unifier_plugin to_unifier_plugin(lua_State * L, int idx) { luaL_checktype(L, idx, LUA_TFUNCTION); // user-fun luaref f(L, idx); return unifier_plugin([=](constraint const & c, name_generator const & ngen) { lua_State * L = f.get_state(); f.push(); push_constraint(L, c); push_name_generator(L, ngen); pcall(L, 2, 1, 0); lazy_list r; if (is_constraint(L, -1)) { // single constraint r = lazy_list(constraints(to_constraint(L, -1))); } else if (lua_istable(L, -1)) { int num = objlen(L, -1); if (num == 0) { // empty table r = lazy_list(); } else { lua_rawgeti(L, -1, 1); if (is_constraint(L, -1)) { // array of constraints case lua_pop(L, 1); r = lazy_list(to_constraints(L, -1)); } else { lua_pop(L, 1); buffer css; // array of array of constraints for (int i = 1; i <= num; i++) { lua_rawgeti(L, -1, i); css.push_back(to_constraints(L, -1)); lua_pop(L, 1); } r = to_lazy(to_list(css.begin(), css.end())); } } } else if (lua_isnil(L, -1)) { // nil case r = lazy_list(); } else { throw exception("invalid unifier plugin, the result value must be a constrant, " "nil, an array of constraints, or an array of arrays of constraints"); } lua_pop(L, 1); return r; }); } #endif static name g_tmp_prefix = name::mk_internal_unique_name(); static int unify(lua_State * L) { int nargs = lua_gettop(L); lazy_list r; environment const & env = to_environment(L, 1); if (is_expr(L, 2)) { if (nargs == 7) r = unify(env, to_expr(L, 2), to_expr(L, 3), to_name_generator(L, 4), lua_toboolean(L, 5), to_substitution(L, 6), to_options(L, 7)); else if (nargs == 6) r = unify(env, to_expr(L, 2), to_expr(L, 3), to_name_generator(L, 4), lua_toboolean(L, 5), to_substitution(L, 6), options()); else r = unify(env, to_expr(L, 2), to_expr(L, 3), to_name_generator(L, 4), lua_toboolean(L, 5)); } else { buffer cs; to_constraint_buffer(L, 2, cs); if (nargs == 4) r = unify(env, cs.size(), cs.data(), to_name_generator(L, 3), false, to_options(L, 4)); else r = unify(env, cs.size(), cs.data(), to_name_generator(L, 3), false, options()); } return push_substitution_seq_it(L, r); } void open_unifier(lua_State * L) { luaL_newmetatable(L, substitution_seq_mt); lua_pushvalue(L, -1); lua_setfield(L, -2, "__index"); setfuncs(L, substitution_seq_m, 0); SET_GLOBAL_FUN(substitution_seq_pred, "is_substitution_seq"); SET_GLOBAL_FUN(unify_simple, "unify_simple"); SET_GLOBAL_FUN(unify, "unify"); lua_newtable(L); SET_ENUM("Solved", unify_status::Solved); SET_ENUM("Failed", unify_status::Failed); SET_ENUM("Unsupported", unify_status::Unsupported); lua_setglobal(L, "unify_status"); } }