-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT import hott.equiv hott.funext_varieties import data.prod data.sigma data.unit open path function prod sigma truncation Equiv IsEquiv unit set_option pp.universes true definition isequiv_path {A B : Type} (H : A ≈ B) := (@IsEquiv.transport Type (λX, X) A B H) definition equiv_path {A B : Type} (H : A ≈ B) : A ≃ B := Equiv.mk _ (isequiv_path H) -- First, define an axiom free variant of Univalence definition ua_type := Π (A B : Type), IsEquiv (@equiv_path A B) context universe variables l k parameter {ua : ua_type.{l+1}} protected theorem ua_isequiv_postcompose {A B : Type.{l+1}} {C : Type} {w : A → B} {H0 : IsEquiv w} : IsEquiv (@compose C A B w) := let w' := Equiv.mk w H0 in let eqinv : A ≈ B := (equiv_path⁻¹ w') in let eq' := equiv_path eqinv in IsEquiv.adjointify (@compose C A B w) (@compose C B A (IsEquiv.inv w)) (λ (x : C → B), have eqretr : eq' ≈ w', from (@retr _ _ (@equiv_path A B) (ua A B) w'), have invs_eq : (equiv_fun eq')⁻¹ ≈ (equiv_fun w')⁻¹, from inv_eq eq' w' eqretr, have eqfin : (equiv_fun eq') ∘ ((equiv_fun eq')⁻¹ ∘ x) ≈ x, from (λ p, (@path.rec_on Type.{l+1} A (λ B' p', Π (x' : C → B'), (equiv_fun (equiv_path p')) ∘ ((equiv_fun (equiv_path p'))⁻¹ ∘ x') ≈ x') B p (λ x', idp)) ) eqinv x, have eqfin' : (equiv_fun w') ∘ ((equiv_fun eq')⁻¹ ∘ x) ≈ x, from eqretr ▹ eqfin, have eqfin'' : (equiv_fun w') ∘ ((equiv_fun w')⁻¹ ∘ x) ≈ x, from invs_eq ▹ eqfin', eqfin'' ) (λ (x : C → A), have eqretr : eq' ≈ w', from (@retr _ _ (@equiv_path A B) (ua A B) w'), have invs_eq : (equiv_fun eq')⁻¹ ≈ (equiv_fun w')⁻¹, from inv_eq eq' w' eqretr, have eqfin : (equiv_fun eq')⁻¹ ∘ ((equiv_fun eq') ∘ x) ≈ x, from (λ p, path.rec_on p idp) eqinv, have eqfin' : (equiv_fun eq')⁻¹ ∘ ((equiv_fun w') ∘ x) ≈ x, from eqretr ▹ eqfin, have eqfin'' : (equiv_fun w')⁻¹ ∘ ((equiv_fun w') ∘ x) ≈ x, from invs_eq ▹ eqfin', eqfin'' ) -- We are ready to prove functional extensionality, -- starting with the naive non-dependent version. protected definition diagonal [reducible] (B : Type) : Type := Σ xy : B × B, pr₁ xy ≈ pr₂ xy protected definition isequiv_src_compose {A B C : Type} : @IsEquiv (A → diagonal B) (A → B) (compose (pr₁ ∘ dpr1)) := @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1) (IsEquiv.adjointify (pr₁ ∘ dpr1) (λ x, dpair (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, path.rec_on p idp)))) protected definition isequiv_tgt_compose {A B C : Type} : @IsEquiv (A → diagonal B) (A → B) (compose (pr₂ ∘ dpr1)) := @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1) (IsEquiv.adjointify (pr2 ∘ dpr1) (λ x, dpair (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, path.rec_on p idp)))) theorem ua_implies_funext_nondep {A B : Type.{l+1}} : Π {f g : A → B}, f ∼ g → f ≈ g := (λ (f g : A → B) (p : f ∼ g), let d := λ (x : A), dpair (f x , f x) idp in let e := λ (x : A), dpair (f x , g x) (p x) in let precomp1 := compose (pr₁ ∘ dpr1) in have equiv1 [visible] : IsEquiv precomp1, from @isequiv_src_compose A B (diagonal B), have equiv2 [visible] : Π x y, IsEquiv (ap precomp1), from IsEquiv.ap_closed precomp1, have H' : Π (x y : A → diagonal B), pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y, from (λ x y, IsEquiv.inv (ap precomp1)), have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e, from idp, have eq0 : d ≈ e, from H' d e eq2, have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e, from ap _ eq0, eq1 ) end context universe variables l k parameters {ua1 : ua_type.{l+1}} {ua2 : ua_type.{l+2}} --parameters {ua1 ua2 : ua_type} -- Now we use this to prove weak funext, which as we know -- implies (with dependent eta) also the strong dependent funext. set_option pp.universes true check @ua_implies_funext_nondep check @weak_funext_implies_funext check @ua_type definition lift : Type.{l+1} → Type.{l+2} := sorry theorem ua_implies_weak_funext : weak_funext := (λ (A : Type.{l+1}) (P : A → Type.{l+1}) allcontr, have liftA : Type.{l+2}, from lift A, let U := (λ (x : A), unit) in have pequiv : Πx, P x ≃ U x, from (λ x, @equiv_contr_unit(P x) (allcontr x)), have psim : Πx, P x ≈ U x, from (λ x, @IsEquiv.inv _ _ (@equiv_path (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)), have p : P ≈ U, from @ua_implies_funext_nondep.{l} ua1 A Type.{l+1} P U psim, have tU' : is_contr (A → unit), from is_contr.mk (λ x, ⋆) (λ f, @ua_implies_funext_nondep ua1 _ _ _ _ (λ x, unit.rec_on (f x) idp)), have tU : is_contr (Πx, U x), from tU', have tlast : is_contr (Πx, P x), from path.transport _ (p⁻¹) tU, tlast ) end -- In the following we will proof function extensionality using the univalence axiom -- TODO: check out why I have to generalize on A and P here definition ua_implies_funext_type {ua : ua_type.{1}} : @funext_type := (λ A P, weak_funext_implies_funext (@ua_implies_weak_funext ua))