-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import general_notation import logic.core.connectives logic.core.decidable logic.core.inhabited open eq_ops eq decidable inductive bool : Type := ff : bool, tt : bool namespace bool protected definition rec_on {C : bool → Type} (b : bool) (H₁ : C ff) (H₂ : C tt) : C b := rec H₁ H₂ b protected definition cases_on {p : bool → Prop} (b : bool) (H₁ : p ff) (H₂ : p tt) : p b := rec H₁ H₂ b definition cond {A : Type} (b : bool) (t e : A) := rec_on b e t theorem dichotomy (b : bool) : b = ff ∨ b = tt := cases_on b (or.inl rfl) (or.inr rfl) theorem cond_ff {A : Type} (t e : A) : cond ff t e = e := rfl theorem cond_tt {A : Type} (t e : A) : cond tt t e = t := rfl theorem ff_ne_tt : ¬ ff = tt := assume H : ff = tt, absurd (calc true = cond tt true false : (cond_tt _ _)⁻¹ ... = cond ff true false : {H⁻¹} ... = false : cond_ff _ _) true_ne_false definition or (a b : bool) := rec_on a (rec_on b ff tt) tt theorem or_tt_left (a : bool) : or tt a = tt := rfl infixl `||` := or theorem or_tt_right (a : bool) : a || tt = tt := cases_on a rfl rfl theorem or_ff_left (a : bool) : ff || a = a := cases_on a rfl rfl theorem or_ff_right (a : bool) : a || ff = a := cases_on a rfl rfl theorem or_id (a : bool) : a || a = a := cases_on a rfl rfl theorem or_comm (a b : bool) : a || b = b || a := cases_on a (cases_on b rfl rfl) (cases_on b rfl rfl) theorem or_assoc (a b c : bool) : (a || b) || c = a || (b || c) := cases_on a (calc (ff || b) || c = b || c : {or_ff_left b} ... = ff || (b || c) : or_ff_left (b || c)⁻¹) (calc (tt || b) || c = tt || c : {or_tt_left b} ... = tt : or_tt_left c ... = tt || (b || c) : or_tt_left (b || c)⁻¹) theorem or_to_or {a b : bool} : a || b = tt → a = tt ∨ b = tt := rec_on a (assume H : ff || b = tt, have Hb : b = tt, from (or_ff_left b) ▸ H, or.inr Hb) (assume H, or.inl rfl) definition and (a b : bool) := rec_on a ff (rec_on b ff tt) infixl `&&` := and theorem and_ff_left (a : bool) : ff && a = ff := rfl theorem and_tt_left (a : bool) : tt && a = a := cases_on a rfl rfl theorem and_ff_right (a : bool) : a && ff = ff := cases_on a rfl rfl theorem and_tt_right (a : bool) : a && tt = a := cases_on a rfl rfl theorem and_id (a : bool) : a && a = a := cases_on a rfl rfl theorem and_comm (a b : bool) : a && b = b && a := cases_on a (cases_on b rfl rfl) (cases_on b rfl rfl) theorem and_assoc (a b c : bool) : (a && b) && c = a && (b && c) := cases_on a (calc (ff && b) && c = ff && c : {and_ff_left b} ... = ff : and_ff_left c ... = ff && (b && c) : and_ff_left (b && c)⁻¹) (calc (tt && b) && c = b && c : {and_tt_left b} ... = tt && (b && c) : and_tt_left (b && c)⁻¹) theorem and_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt := or.elim (dichotomy a) (assume H0 : a = ff, absurd (calc ff = ff && b : (and_ff_left _)⁻¹ ... = a && b : {H0⁻¹} ... = tt : H) ff_ne_tt) (assume H1 : a = tt, H1) theorem and_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt := and_eq_tt_elim_left (and_comm b a ⬝ H) definition not (a : bool) := rec_on a tt ff theorem bnot_bnot (a : bool) : not (not a) = a := cases_on a rfl rfl theorem bnot_false : not ff = tt := rfl theorem bnot_true : not tt = ff := rfl protected theorem is_inhabited [instance] : inhabited bool := inhabited.mk ff protected definition has_decidable_eq [instance] : decidable_eq bool := take a b : bool, rec_on a (rec_on b (inl rfl) (inr ff_ne_tt)) (rec_on b (inr (ne.symm ff_ne_tt)) (inl rfl)) end bool