/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import logic.eq open eq eq.ops decidable namespace bool local attribute bor [reducible] local attribute band [reducible] theorem dichotomy (b : bool) : b = ff ∨ b = tt := bool.cases_on b (or.inl rfl) (or.inr rfl) theorem cond_ff [simp] {A : Type} (t e : A) : cond ff t e = e := rfl theorem cond_tt [simp] {A : Type} (t e : A) : cond tt t e = t := rfl theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt | @eq_tt_of_ne_ff tt H := rfl | @eq_tt_of_ne_ff ff H := absurd rfl H theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff | @eq_ff_of_ne_tt tt H := absurd rfl H | @eq_ff_of_ne_tt ff H := rfl theorem absurd_of_eq_ff_of_eq_tt {B : Prop} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B := absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt theorem tt_bor [simp] (a : bool) : bor tt a = tt := rfl notation a || b := bor a b theorem bor_tt [simp] (a : bool) : a || tt = tt := bool.cases_on a rfl rfl theorem ff_bor [simp] (a : bool) : ff || a = a := bool.cases_on a rfl rfl theorem bor_ff [simp] (a : bool) : a || ff = a := bool.cases_on a rfl rfl theorem bor_self [simp] (a : bool) : a || a = a := bool.cases_on a rfl rfl theorem bor.comm [simp] (a b : bool) : a || b = b || a := by cases a; repeat (cases b | reflexivity) theorem bor.assoc [simp] (a b c : bool) : (a || b) || c = a || (b || c) := match a with | ff := by rewrite *ff_bor | tt := by rewrite *tt_bor end theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ∨ b = tt := bool.rec_on a (suppose ff || b = tt, have b = tt, from !ff_bor ▸ this, or.inr this) (suppose tt || b = tt, or.inl rfl) theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt := by rewrite H theorem bor_inr {a b : bool} (H : b = tt) : a || b = tt := bool.rec_on a (by rewrite H) (by rewrite H) theorem ff_band [simp] (a : bool) : ff && a = ff := rfl theorem tt_band [simp] (a : bool) : tt && a = a := bool.cases_on a rfl rfl theorem band_ff [simp] (a : bool) : a && ff = ff := bool.cases_on a rfl rfl theorem band_tt [simp] (a : bool) : a && tt = a := bool.cases_on a rfl rfl theorem band_self [simp] (a : bool) : a && a = a := bool.cases_on a rfl rfl theorem band.comm [simp] (a b : bool) : a && b = b && a := bool.cases_on a (bool.cases_on b rfl rfl) (bool.cases_on b rfl rfl) theorem band.assoc [simp] (a b c : bool) : (a && b) && c = a && (b && c) := match a with | ff := by rewrite *ff_band | tt := by rewrite *tt_band end theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt := or.elim (dichotomy a) (suppose a = ff, absurd (by inst_simp) ff_ne_tt) (suppose a = tt, this) theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt := by rewrite [H₁, H₂] theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt := band_elim_left (!band.comm ⬝ H) theorem bnot_bnot [simp] (a : bool) : bnot (bnot a) = a := bool.cases_on a rfl rfl theorem bnot_false [simp] : bnot ff = tt := rfl theorem bnot_true [simp] : bnot tt = ff := rfl theorem eq_tt_of_bnot_eq_ff {a : bool} : bnot a = ff → a = tt := bool.cases_on a (by contradiction) (λ h, rfl) theorem eq_ff_of_bnot_eq_tt {a : bool} : bnot a = tt → a = ff := bool.cases_on a (λ h, rfl) (by contradiction) definition bxor (x:bool) (y:bool) := cond x (bnot y) y end bool