---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn ---------------------------------------------------------------------------------------------------- import logic open tactic inductive nat : Type := zero : nat, succ : nat → nat notation `ℕ`:max := nat namespace nat abbreviation plus (x y : ℕ) : ℕ := nat.rec x (λ n r, succ r) y definition to_nat [coercion] [inline] (n : num) : ℕ := num.rec zero (λ n, pos_num.rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n print "==================" theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat.rec x f 0 = x := eq.refl _ end nat