/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jakob von Raumer -/ import .iso open iso is_equiv equiv eq is_trunc -- A category is a precategory extended by a witness -- that the function from paths to isomorphisms, -- is an equivalecnce. namespace category definition is_univalent [reducible] {ob : Type} (C : precategory ob) := Π(a b : ob), is_equiv (iso_of_eq : a = b → a ≅ b) structure category [class] (ob : Type) extends parent : precategory ob := mk' :: (iso_of_path_equiv : is_univalent parent) attribute category [multiple-instances] abbreviation iso_of_path_equiv := @category.iso_of_path_equiv definition category.mk [reducible] [unfold 2] {ob : Type} (C : precategory ob) (H : Π (a b : ob), is_equiv (iso_of_eq : a = b → a ≅ b)) : category ob := precategory.rec_on C category.mk' H section basic variables {ob : Type} [C : category ob] include C -- Make iso_of_path_equiv a class instance -- TODO: Unsafe class instance? attribute iso_of_path_equiv [instance] definition eq_equiv_iso [constructor] (a b : ob) : (a = b) ≃ (a ≅ b) := equiv.mk iso_of_eq _ definition eq_of_iso [reducible] {a b : ob} : a ≅ b → a = b := iso_of_eq⁻¹ᶠ definition iso_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : iso_of_eq (eq_of_iso p) = p := right_inv iso_of_eq p definition hom_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : hom_of_eq (eq_of_iso p) = to_hom p := ap to_hom !iso_of_eq_eq_of_iso definition inv_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : inv_of_eq (eq_of_iso p) = to_inv p := ap to_inv !iso_of_eq_eq_of_iso theorem eq_of_iso_refl {a : ob} : eq_of_iso (iso.refl a) = idp := inv_eq_of_eq idp definition is_trunc_1_ob : is_trunc 1 ob := begin apply is_trunc_succ_intro, intro a b, fapply is_trunc_is_equiv_closed, exact (@eq_of_iso _ _ a b), apply is_equiv_inv, end end basic -- Bundled version of categories -- we don't use Category.carrier explicitly, but rather use Precategory.carrier (to_Precategory C) structure Category : Type := (carrier : Type) (struct : category carrier) attribute Category.struct [instance] [coercion] attribute Category.to.precategory category.to_precategory [constructor] definition Category.to_Precategory [constructor] [coercion] [reducible] (C : Category) : Precategory := Precategory.mk (Category.carrier C) C definition category.Mk [constructor] [reducible] := Category.mk definition category.MK [constructor] [reducible] (C : Precategory) (H : is_univalent C) : Category := Category.mk C (category.mk C H) definition Category.eta (C : Category) : Category.mk C C = C := Category.rec (λob c, idp) C end category