/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn, Jakob von Raumer -/ import .functor .iso open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext iso structure nat_trans {C : Precategory} {D : Precategory} (F G : C ⇒ D) : Type := (natural_map : Π (a : C), hom (F a) (G a)) (naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f) namespace nat_trans infixl `⟹`:25 := nat_trans -- \==> variables {B C D E : Precategory} {F G H I : C ⇒ D} {F' G' : D ⇒ E} {F'' G'' : E ⇒ B} {J : C ⇒ C} attribute natural_map [coercion] protected definition compose [constructor] (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H := nat_trans.mk (λ a, η a ∘ θ a) (λ a b f, abstract calc H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : by rewrite assoc ... = (η b ∘ G f) ∘ θ a : by rewrite naturality ... = η b ∘ (G f ∘ θ a) : by rewrite assoc ... = η b ∘ (θ b ∘ F f) : by rewrite naturality ... = (η b ∘ θ b) ∘ F f : by rewrite assoc end) infixr `∘n`:60 := nat_trans.compose protected definition id [reducible] [constructor] {F : C ⇒ D} : nat_trans F F := mk (λa, id) (λa b f, !id_right ⬝ !id_left⁻¹) protected definition ID [reducible] [constructor] (F : C ⇒ D) : nat_trans F F := (@nat_trans.id C D F) notation 1 := nat_trans.id definition nat_trans_mk_eq {η₁ η₂ : Π (a : C), hom (F a) (G a)} (nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f) (nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f) (p : η₁ ~ η₂) : nat_trans.mk η₁ nat₁ = nat_trans.mk η₂ nat₂ := apd011 nat_trans.mk (eq_of_homotopy p) !is_hprop.elim definition nat_trans_eq {η₁ η₂ : F ⟹ G} : natural_map η₁ ~ natural_map η₂ → η₁ = η₂ := by induction η₁; induction η₂; apply nat_trans_mk_eq protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ := nat_trans_eq (λa, !assoc) protected definition id_left (η : F ⟹ G) : 1 ∘n η = η := nat_trans_eq (λa, !id_left) protected definition id_right (η : F ⟹ G) : η ∘n 1 = η := nat_trans_eq (λa, !id_right) protected definition sigma_char (F G : C ⇒ D) : (Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) := begin fapply equiv.mk, -- TODO(Leo): investigate why we need to use rexact in the following line {intro S, apply nat_trans.mk, rexact (S.2)}, fapply adjointify, intro H, fapply sigma.mk, intro a, exact (H a), intro a b f, exact (naturality H f), intro η, apply nat_trans_eq, intro a, apply idp, intro S, fapply sigma_eq, { apply eq_of_homotopy, intro a, apply idp}, { apply is_hprop.elimo} end definition is_hset_nat_trans [instance] : is_hset (F ⟹ G) := by apply is_trunc_is_equiv_closed; apply (equiv.to_is_equiv !nat_trans.sigma_char) definition change_natural_map [constructor] (η : F ⟹ G) (f : Π (a : C), F a ⟶ G a) (p : Πa, η a = f a) : F ⟹ G := nat_trans.mk f (λa b g, p a ▸ p b ▸ naturality η g) definition nat_trans_functor_compose [constructor] (η : G ⟹ H) (F : E ⇒ C) : G ∘f F ⟹ H ∘f F := nat_trans.mk (λ a, η (F a)) (λ a b f, naturality η (F f)) definition functor_nat_trans_compose [constructor] (F : D ⇒ E) (η : G ⟹ H) : F ∘f G ⟹ F ∘f H := nat_trans.mk (λ a, F (η a)) (λ a b f, calc F (H f) ∘ F (η a) = F (H f ∘ η a) : by rewrite respect_comp ... = F (η b ∘ G f) : by rewrite (naturality η f) ... = F (η b) ∘ F (G f) : by rewrite respect_comp) definition nat_trans_id_functor_compose [constructor] (η : J ⟹ 1) (F : E ⇒ C) : J ∘f F ⟹ F := nat_trans.mk (λ a, η (F a)) (λ a b f, naturality η (F f)) definition id_nat_trans_functor_compose [constructor] (η : 1 ⟹ J) (F : E ⇒ C) : F ⟹ J ∘f F := nat_trans.mk (λ a, η (F a)) (λ a b f, naturality η (F f)) definition functor_nat_trans_id_compose [constructor] (F : C ⇒ D) (η : J ⟹ 1) : F ∘f J ⟹ F := nat_trans.mk (λ a, F (η a)) (λ a b f, calc F f ∘ F (η a) = F (f ∘ η a) : by rewrite respect_comp ... = F (η b ∘ J f) : by rewrite (naturality η f) ... = F (η b) ∘ F (J f) : by rewrite respect_comp) definition functor_id_nat_trans_compose [constructor] (F : C ⇒ D) (η : 1 ⟹ J) : F ⟹ F ∘f J := nat_trans.mk (λ a, F (η a)) (λ a b f, calc F (J f) ∘ F (η a) = F (J f ∘ η a) : by rewrite respect_comp ... = F (η b ∘ f) : by rewrite (naturality η f) ... = F (η b) ∘ F f : by rewrite respect_comp) infixr `∘nf`:62 := nat_trans_functor_compose infixr `∘fn`:62 := functor_nat_trans_compose infixr `∘n1f`:62 := nat_trans_id_functor_compose infixr `∘1nf`:62 := id_nat_trans_functor_compose infixr `∘f1n`:62 := functor_id_nat_trans_compose infixr `∘fn1`:62 := functor_nat_trans_id_compose definition nf_fn_eq_fn_nf_pt (η : F ⟹ G) (θ : F' ⟹ G') (c : C) : (θ (G c)) ∘ (F' (η c)) = (G' (η c)) ∘ (θ (F c)) := (naturality θ (η c))⁻¹ variable (F') definition nf_fn_eq_fn_nf_pt' (η : F ⟹ G) (θ : F'' ⟹ G'') (c : C) : (θ (F' (G c))) ∘ (F'' (F' (η c))) = (G'' (F' (η c))) ∘ (θ (F' (F c))) := (naturality θ (F' (η c)))⁻¹ variable {F'} definition nf_fn_eq_fn_nf (η : F ⟹ G) (θ : F' ⟹ G') : (θ ∘nf G) ∘n (F' ∘fn η) = (G' ∘fn η) ∘n (θ ∘nf F) := nat_trans_eq (λ c, nf_fn_eq_fn_nf_pt η θ c) definition fn_n_distrib (F' : D ⇒ E) (η : G ⟹ H) (θ : F ⟹ G) : F' ∘fn (η ∘n θ) = (F' ∘fn η) ∘n (F' ∘fn θ) := nat_trans_eq (λc, by apply respect_comp) definition n_nf_distrib (η : G ⟹ H) (θ : F ⟹ G) (F' : B ⇒ C) : (η ∘n θ) ∘nf F' = (η ∘nf F') ∘n (θ ∘nf F') := nat_trans_eq (λc, idp) definition fn_id (F' : D ⇒ E) : F' ∘fn nat_trans.ID F = 1 := nat_trans_eq (λc, by apply respect_id) definition id_nf (F' : B ⇒ C) : nat_trans.ID F ∘nf F' = 1 := nat_trans_eq (λc, idp) definition id_fn (η : G ⟹ H) (c : C) : (1 ∘fn η) c = η c := idp definition nf_id (η : G ⟹ H) (c : C) : (η ∘nf 1) c = η c := idp definition nat_trans_of_eq [reducible] (p : F = G) : F ⟹ G := nat_trans.mk (λc, hom_of_eq (ap010 to_fun_ob p c)) (λa b f, eq.rec_on p (!id_right ⬝ !id_left⁻¹)) end nat_trans