/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jeremy Avigad The integers, with addition, multiplication, and subtraction. The representation of the integers is chosen to compute efficiently. To faciliate proving things about these operations, we show that the integers are a quotient of ℕ × ℕ with the usual equivalence relation, ≡, and functions abstr : ℕ × ℕ → ℤ repr : ℤ → ℕ × ℕ satisfying: abstr_repr (a : ℤ) : abstr (repr a) = a repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p abstr_eq (p q : ℕ × ℕ) : p ≡ q → abstr p = abstr q For example, to "lift" statements about add to statements about padd, we need to prove the following: repr_add (a b : ℤ) : repr (a + b) = padd (repr a) (repr b) padd_congr (p p' q q' : ℕ × ℕ) (H1 : p ≡ p') (H2 : q ≡ q') : padd p q ≡ p' q' -/ import data.nat.basic data.nat.order data.nat.sub data.prod import algebra.relation algebra.binary algebra.ordered_ring open eq.ops open prod relation nat open decidable binary open algebra /- the type of integers -/ inductive int : Type := | of_nat : nat → int | neg_succ_of_nat : nat → int notation `ℤ` := int definition int.of_num [coercion] [reducible] [constructor] (n : num) : ℤ := int.of_nat (nat.of_num n) namespace int attribute int.of_nat [coercion] notation `-[1+ ` n `]` := int.neg_succ_of_nat n -- for pretty-printing output definition int_has_zero [reducible] [instance] : has_zero int := has_zero.mk (of_nat 0) definition int_has_one [reducible] [instance] : has_one int := has_one.mk (of_nat 1) theorem of_nat_zero : of_nat (0:nat) = (0:int) := rfl theorem of_nat_one : of_nat (1:nat) = (1:int) := rfl /- definitions of basic functions -/ definition neg_of_nat : ℕ → ℤ | 0 := 0 | (succ m) := -[1+ m] definition sub_nat_nat (m n : ℕ) : ℤ := match (n - m : nat) with | 0 := of_nat (m - n) -- m ≥ n | (succ k) := -[1+ k] -- m < n, and n - m = succ k end protected definition neg (a : ℤ) : ℤ := int.cases_on a neg_of_nat succ protected definition add : ℤ → ℤ → ℤ | (of_nat m) (of_nat n) := m + n | (of_nat m) -[1+ n] := sub_nat_nat m (succ n) | -[1+ m] (of_nat n) := sub_nat_nat n (succ m) | -[1+ m] -[1+ n] := neg_of_nat (succ m + succ n) protected definition mul : ℤ → ℤ → ℤ | (of_nat m) (of_nat n) := m * n | (of_nat m) -[1+ n] := neg_of_nat (m * succ n) | -[1+ m] (of_nat n) := neg_of_nat (succ m * n) | -[1+ m] -[1+ n] := succ m * succ n /- notation -/ protected definition prio : num := num.pred nat.prio definition int_has_add [reducible] [instance] [priority int.prio] : has_add int := has_add.mk int.add definition int_has_neg [reducible] [instance] [priority int.prio] : has_neg int := has_neg.mk int.neg definition int_has_mul [reducible] [instance] [priority int.prio] : has_mul int := has_mul.mk int.mul lemma mul_of_nat_of_nat (m n : nat) : of_nat m * of_nat n = of_nat (m * n) := rfl lemma mul_of_nat_neg_succ_of_nat (m n : nat) : of_nat m * -[1+ n] = neg_of_nat (m * succ n) := rfl lemma mul_neg_succ_of_nat_of_nat (m n : nat) : -[1+ m] * of_nat n = neg_of_nat (succ m * n) := rfl lemma mul_neg_succ_of_nat_neg_succ_of_nat (m n : nat) : -[1+ m] * -[1+ n] = succ m * succ n := rfl /- some basic functions and properties -/ theorem of_nat.inj {m n : ℕ} (H : of_nat m = of_nat n) : m = n := int.no_confusion H imp.id theorem eq_of_of_nat_eq_of_nat {m n : ℕ} (H : of_nat m = of_nat n) : m = n := of_nat.inj H theorem of_nat_eq_of_nat_iff (m n : ℕ) : of_nat m = of_nat n ↔ m = n := iff.intro of_nat.inj !congr_arg theorem neg_succ_of_nat.inj {m n : ℕ} (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n := int.no_confusion H imp.id theorem neg_succ_of_nat_eq (n : ℕ) : -[1+ n] = -(n + 1) := rfl private definition has_decidable_eq₂ : Π (a b : ℤ), decidable (a = b) | (of_nat m) (of_nat n) := decidable_of_decidable_of_iff (nat.has_decidable_eq m n) (iff.symm (of_nat_eq_of_nat_iff m n)) | (of_nat m) -[1+ n] := inr (by contradiction) | -[1+ m] (of_nat n) := inr (by contradiction) | -[1+ m] -[1+ n] := if H : m = n then inl (congr_arg neg_succ_of_nat H) else inr (not.mto neg_succ_of_nat.inj H) definition has_decidable_eq [instance] [priority int.prio] : decidable_eq ℤ := has_decidable_eq₂ theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl theorem of_nat_mul (n m : ℕ) : of_nat (n * m) = of_nat n * of_nat m := rfl theorem sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) := show sub_nat_nat m n = nat.cases_on 0 (m -[nat] n) _, from (sub_eq_zero_of_le H) ▸ rfl section local attribute sub_nat_nat [reducible] theorem sub_nat_nat_of_lt {m n : ℕ} (H : m < n) : sub_nat_nat m n = -[1+ pred (n - m)] := have H1 : n - m = succ (pred (n - m)), from eq.symm (succ_pred_of_pos (sub_pos_of_lt H)), show sub_nat_nat m n = nat.cases_on (succ (nat.pred (n - m))) (m -[nat] n) _, from H1 ▸ rfl end definition nat_abs (a : ℤ) : ℕ := int.cases_on a function.id succ theorem nat_abs_of_nat (n : ℕ) : nat_abs n = n := rfl theorem eq_zero_of_nat_abs_eq_zero : Π {a : ℤ}, nat_abs a = 0 → a = 0 | (of_nat m) H := congr_arg of_nat H | -[1+ m'] H := absurd H !succ_ne_zero theorem nat_abs_zero : nat_abs (0:int) = (0:nat) := rfl theorem nat_abs_one : nat_abs (1:int) = (1:nat) := rfl /- int is a quotient of ordered pairs of natural numbers -/ protected definition equiv (p q : ℕ × ℕ) : Prop := pr1 p + pr2 q = pr2 p + pr1 q local infix ≡ := int.equiv protected theorem equiv.refl [refl] {p : ℕ × ℕ} : p ≡ p := !add.comm protected theorem equiv.symm [symm] {p q : ℕ × ℕ} (H : p ≡ q) : q ≡ p := calc pr1 q + pr2 p = pr2 p + pr1 q : by rewrite add.comm ... = pr1 p + pr2 q : H⁻¹ ... = pr2 q + pr1 p : by rewrite add.comm protected theorem equiv.trans [trans] {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r := add.cancel_right (calc pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by rewrite add.right_comm ... = pr2 p + pr1 q + pr2 r : {H1} ... = pr2 p + (pr1 q + pr2 r) : by rewrite add.assoc ... = pr2 p + (pr2 q + pr1 r) : {H2} ... = pr2 p + pr2 q + pr1 r : by rewrite add.assoc ... = pr2 p + pr1 r + pr2 q : by rewrite add.right_comm) protected theorem equiv_equiv : is_equivalence int.equiv := is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans protected theorem equiv_cases {p q : ℕ × ℕ} (H : p ≡ q) : (pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) := or.elim (@le_or_gt _ _ (pr2 p) (pr1 p)) (suppose pr1 p ≥ pr2 p, have pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right this (pr2 q), or.inl (and.intro `pr1 p ≥ pr2 p` (le_of_add_le_add_left this))) (suppose H₁ : pr1 p < pr2 p, have pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right H₁ (pr2 q), or.inr (and.intro H₁ (lt_of_add_lt_add_left this))) protected theorem equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ equiv.refl /- the representation and abstraction functions -/ definition abstr (a : ℕ × ℕ) : ℤ := sub_nat_nat (pr1 a) (pr2 a) theorem abstr_of_ge {p : ℕ × ℕ} (H : pr1 p ≥ pr2 p) : abstr p = of_nat (pr1 p - pr2 p) := sub_nat_nat_of_ge H theorem abstr_of_lt {p : ℕ × ℕ} (H : pr1 p < pr2 p) : abstr p = -[1+ pred (pr2 p - pr1 p)] := sub_nat_nat_of_lt H definition repr : ℤ → ℕ × ℕ | (of_nat m) := (m, 0) | -[1+ m] := (0, succ m) theorem abstr_repr : Π (a : ℤ), abstr (repr a) = a | (of_nat m) := (sub_nat_nat_of_ge (zero_le m)) | -[1+ m] := rfl theorem repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) := lt_ge_by_cases (take H : m < n, have H1 : repr (sub_nat_nat m n) = (0, n - m), by rewrite [sub_nat_nat_of_lt H, -(succ_pred_of_pos (sub_pos_of_lt H))], H1⁻¹ ▸ (!zero_add ⬝ (sub_add_cancel (le_of_lt H))⁻¹)) (take H : m ≥ n, have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl, H1⁻¹ ▸ ((sub_add_cancel H) ⬝ !zero_add⁻¹)) theorem repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p := !prod.eta ▸ !repr_sub_nat_nat theorem abstr_eq {p q : ℕ × ℕ} (Hequiv : p ≡ q) : abstr p = abstr q := or.elim (int.equiv_cases Hequiv) (and.rec (assume (Hp : pr1 p ≥ pr2 p) (Hq : pr1 q ≥ pr2 q), have H : pr1 p - pr2 p = pr1 q - pr2 q, from calc pr1 p - pr2 p = pr1 p + pr2 q - pr2 q - pr2 p : by rewrite add_sub_cancel ... = pr2 p + pr1 q - pr2 q - pr2 p : Hequiv ... = pr2 p + (pr1 q - pr2 q) - pr2 p : add_sub_assoc Hq ... = pr1 q - pr2 q + pr2 p - pr2 p : by rewrite add.comm ... = pr1 q - pr2 q : by rewrite add_sub_cancel, abstr_of_ge Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_ge Hq)⁻¹)) (and.rec (assume (Hp : pr1 p < pr2 p) (Hq : pr1 q < pr2 q), have H : pr2 p - pr1 p = pr2 q - pr1 q, from calc pr2 p - pr1 p = pr2 p + pr1 q - pr1 q - pr1 p : by rewrite add_sub_cancel ... = pr1 p + pr2 q - pr1 q - pr1 p : Hequiv ... = pr1 p + (pr2 q - pr1 q) - pr1 p : add_sub_assoc (le_of_lt Hq) ... = pr2 q - pr1 q + pr1 p - pr1 p : by rewrite add.comm ... = pr2 q - pr1 q : by rewrite add_sub_cancel, abstr_of_lt Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_lt Hq)⁻¹)) theorem equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ (abstr p = abstr q) := iff.intro abstr_eq (assume H, equiv.trans (H ▸ equiv.symm (repr_abstr p)) (repr_abstr q)) theorem equiv_iff3 (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) := iff.trans !equiv_iff (iff.symm (iff.trans (and_iff_right !equiv.refl) (and_iff_right !equiv.refl))) theorem eq_abstr_of_equiv_repr {a : ℤ} {p : ℕ × ℕ} (Hequiv : repr a ≡ p) : a = abstr p := !abstr_repr⁻¹ ⬝ abstr_eq Hequiv theorem eq_of_repr_equiv_repr {a b : ℤ} (H : repr a ≡ repr b) : a = b := eq_abstr_of_equiv_repr H ⬝ !abstr_repr section local attribute abstr [reducible] local attribute dist [reducible] theorem nat_abs_abstr : Π (p : ℕ × ℕ), nat_abs (abstr p) = dist (pr1 p) (pr2 p) | (m, n) := lt_ge_by_cases (assume H : m < n, calc nat_abs (abstr (m, n)) = nat_abs (-[1+ pred (n - m)]) : int.abstr_of_lt H ... = n - m : succ_pred_of_pos (sub_pos_of_lt H) ... = dist m n : dist_eq_sub_of_le (le_of_lt H)) (assume H : m ≥ n, (abstr_of_ge H)⁻¹ ▸ (dist_eq_sub_of_ge H)⁻¹) end theorem cases_of_nat_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) := int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl)) theorem cases_of_nat (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) := or.imp_right (Exists.rec (take n, (exists.intro _))) !cases_of_nat_succ theorem by_cases_of_nat {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat n)) : P a := or.elim (cases_of_nat a) (assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n) (assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n) theorem by_cases_of_nat_succ {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat (succ n))) : P a := or.elim (cases_of_nat_succ a) (assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n) (assume H, obtain (n : ℕ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n) /- int is a ring -/ /- addition -/ definition padd (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p + pr1 q, pr2 p + pr2 q) theorem repr_add : Π (a b : ℤ), repr (add a b) ≡ padd (repr a) (repr b) | (of_nat m) (of_nat n) := !equiv.refl | (of_nat m) -[1+ n] := begin change repr (sub_nat_nat m (succ n)) ≡ (m + 0, 0 + succ n), rewrite [zero_add, add_zero], apply repr_sub_nat_nat end | -[1+ m] (of_nat n) := begin change repr (-[1+ m] + n) ≡ (0 + n, succ m + 0), rewrite [zero_add, add_zero], apply repr_sub_nat_nat end | -[1+ m] -[1+ n] := !repr_sub_nat_nat theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' := calc pr1 p + pr1 q + (pr2 p' + pr2 q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : add.comm4 ... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha} ... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb} ... = pr2 p + pr2 q + (pr1 p' + pr1 q') : add.comm4 theorem padd_comm (p q : ℕ × ℕ) : padd p q = padd q p := calc (pr1 p + pr1 q, pr2 p + pr2 q) = (pr1 q + pr1 p, pr2 p + pr2 q) : by rewrite add.comm ... = (pr1 q + pr1 p, pr2 q + pr2 p) : by rewrite (add.comm (pr2 p) (pr2 q)) theorem padd_assoc (p q r : ℕ × ℕ) : padd (padd p q) r = padd p (padd q r) := calc (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r) = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : by rewrite add.assoc ... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : by rewrite add.assoc theorem add.comm (a b : ℤ) : a + b = b + a := eq_of_repr_equiv_repr (equiv.trans !repr_add (equiv.symm (!padd_comm ▸ !repr_add))) theorem add.assoc (a b c : ℤ) : a + b + c = a + (b + c) := eq_of_repr_equiv_repr (calc repr (a + b + c) ≡ padd (repr (a + b)) (repr c) : repr_add ... ≡ padd (padd (repr a) (repr b)) (repr c) : padd_congr !repr_add !equiv.refl ... = padd (repr a) (padd (repr b) (repr c)) : !padd_assoc ... ≡ padd (repr a) (repr (b + c)) : padd_congr !equiv.refl !repr_add ... ≡ repr (a + (b + c)) : repr_add) theorem add_zero : Π (a : ℤ), a + 0 = a := int.rec (λm, rfl) (λm, rfl) theorem zero_add (a : ℤ) : 0 + a = a := !add.comm ▸ !add_zero /- negation -/ definition pneg (p : ℕ × ℕ) : ℕ × ℕ := (pr2 p, pr1 p) -- note: this is =, not just ≡ theorem repr_neg : Π (a : ℤ), repr (- a) = pneg (repr a) | 0 := rfl | (succ m) := rfl | -[1+ m] := rfl theorem pneg_congr {p p' : ℕ × ℕ} (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H theorem pneg_pneg (p : ℕ × ℕ) : pneg (pneg p) = p := !prod.eta theorem nat_abs_neg (a : ℤ) : nat_abs (-a) = nat_abs a := calc nat_abs (-a) = nat_abs (abstr (repr (-a))) : abstr_repr ... = nat_abs (abstr (pneg (repr a))) : repr_neg ... = dist (pr1 (pneg (repr a))) (pr2 (pneg (repr a))) : nat_abs_abstr ... = dist (pr2 (pneg (repr a))) (pr1 (pneg (repr a))) : dist.comm ... = nat_abs (abstr (repr a)) : nat_abs_abstr ... = nat_abs a : abstr_repr theorem padd_pneg (p : ℕ × ℕ) : padd p (pneg p) ≡ (0, 0) := show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add_comm ▸ rfl theorem padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p := calc pr1 p + pr1 q + pr2 q + pr2 p = pr1 p + (pr1 q + pr2 q) + pr2 p : algebra.add.assoc ... = pr1 p + (pr1 q + pr2 q + pr2 p) : algebra.add.assoc ... = pr1 p + (pr2 q + pr1 q + pr2 p) : algebra.add.comm ... = pr1 p + (pr2 q + pr2 p + pr1 q) : algebra.add.right_comm ... = pr1 p + (pr2 p + pr2 q + pr1 q) : algebra.add.comm ... = pr2 p + pr2 q + pr1 q + pr1 p : algebra.add.comm theorem add.left_inv (a : ℤ) : -a + a = 0 := have H : repr (-a + a) ≡ repr 0, from calc repr (-a + a) ≡ padd (repr (neg a)) (repr a) : repr_add ... = padd (pneg (repr a)) (repr a) : repr_neg ... ≡ repr 0 : padd_pneg, eq_of_repr_equiv_repr H /- nat abs -/ definition pabs (p : ℕ × ℕ) : ℕ := dist (pr1 p) (pr2 p) theorem pabs_congr {p q : ℕ × ℕ} (H : p ≡ q) : pabs p = pabs q := calc pabs p = nat_abs (abstr p) : nat_abs_abstr ... = nat_abs (abstr q) : abstr_eq H ... = pabs q : nat_abs_abstr theorem nat_abs_eq_pabs_repr (a : ℤ) : nat_abs a = pabs (repr a) := calc nat_abs a = nat_abs (abstr (repr a)) : abstr_repr ... = pabs (repr a) : nat_abs_abstr theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b := calc nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr ... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add ... ≤ pabs (repr a) + pabs (repr b) : dist_add_add_le_add_dist_dist ... = pabs (repr a) + nat_abs b : nat_abs_eq_pabs_repr ... = nat_abs a + nat_abs b : nat_abs_eq_pabs_repr theorem nat_abs_neg_of_nat (n : nat) : nat_abs (neg_of_nat n) = n := begin cases n, reflexivity, reflexivity end section local attribute nat_abs [reducible] theorem nat_abs_mul : Π (a b : ℤ), nat_abs (a * b) = (nat_abs a) * (nat_abs b) | (of_nat m) (of_nat n) := rfl | (of_nat m) -[1+ n] := by rewrite [mul_of_nat_neg_succ_of_nat, nat_abs_neg_of_nat] | -[1+ m] (of_nat n) := by rewrite [mul_neg_succ_of_nat_of_nat, nat_abs_neg_of_nat] | -[1+ m] -[1+ n] := rfl end /- multiplication -/ definition pmul (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) theorem repr_neg_of_nat (m : ℕ) : repr (neg_of_nat m) = (0, m) := nat.cases_on m rfl (take m', rfl) -- note: we have =, not just ≡ theorem repr_mul : Π (a b : ℤ), repr (a * b) = pmul (repr a) (repr b) | (of_nat m) (of_nat n) := calc (m * n + 0 * 0, m * 0 + 0) = (m * n + 0 * 0, m * 0 + 0 * n) : by rewrite *zero_mul | (of_nat m) -[1+ n] := calc repr ((m : int) * -[1+ n]) = (m * 0 + 0, m * succ n + 0 * 0) : repr_neg_of_nat ... = (m * 0 + 0 * succ n, m * succ n + 0 * 0) : by rewrite *zero_mul | -[1+ m] (of_nat n) := calc repr (-[1+ m] * (n:int)) = (0 + succ m * 0, succ m * n) : repr_neg_of_nat ... = (0 + succ m * 0, 0 + succ m * n) : nat.zero_add ... = (0 * n + succ m * 0, 0 + succ m * n) : by rewrite zero_mul | -[1+ m] -[1+ n] := calc (succ m * succ n, 0) = (succ m * succ n, 0 * succ n) : by rewrite zero_mul ... = (0 + succ m * succ n, 0 * succ n) : nat.zero_add theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : ℕ} (H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm) : xa*xn+ya*yn+(xb*ym+yb*xm) = xa*yn+ya*xn+(xb*xm+yb*ym) := nat.add.cancel_right (calc xa*xn+ya*yn + (xb*ym+yb*xm) + (yb*xn+xb*yn + (xb*xn+yb*yn)) = xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*ym+yb*xm + (xb*xn+yb*yn)) : by rewrite add.comm4 ... = xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*ym+yb*xm)) : by rewrite {xb*ym+yb*xm +_}nat.add_comm ... = xa*xn+yb*xn + (ya*yn+xb*yn) + (xb*xn+xb*ym + (yb*yn+yb*xm)) : by exact !congr_arg2 !add.comm4 !add.comm4 ... = ya*xn+xb*xn + (xa*yn+yb*yn) + (xb*yn+xb*xm + (yb*xn+yb*ym)) : by rewrite[-+left_distrib,-+right_distrib]; exact H1 ▸ H2 ▸ rfl ... = ya*xn+xa*yn + (xb*xn+yb*yn) + (xb*yn+yb*xn + (xb*xm+yb*ym)) : by exact !congr_arg2 !add.comm4 !add.comm4 ... = xa*yn+ya*xn + (xb*xn+yb*yn) + (xb*yn+yb*xn + (xb*xm+yb*ym)) : by rewrite {xa*yn + _}nat.add_comm ... = xa*yn+ya*xn + (xb*xn+yb*yn) + (yb*xn+xb*yn + (xb*xm+yb*ym)) : by rewrite {xb*yn + _}nat.add_comm ... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*xm+yb*ym)) : by rewrite (!add.comm4) ... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xm+yb*ym + (xb*xn+yb*yn)) : by rewrite {xb*xn+yb*yn + _}nat.add_comm ... = xa*yn+ya*xn + (xb*xm+yb*ym) + (yb*xn+xb*yn + (xb*xn+yb*yn)) : by rewrite add.comm4) theorem pmul_congr {p p' q q' : ℕ × ℕ} : p ≡ p' → q ≡ q' → pmul p q ≡ pmul p' q' := equiv_mul_prep theorem pmul_comm (p q : ℕ × ℕ) : pmul p q = pmul q p := show (_,_) = (_,_), begin congruence, { congruence, repeat rewrite mul.comm }, { rewrite algebra.add.comm, congruence, repeat rewrite mul.comm } end theorem mul.comm (a b : ℤ) : a * b = b * a := eq_of_repr_equiv_repr ((calc repr (a * b) = pmul (repr a) (repr b) : repr_mul ... = pmul (repr b) (repr a) : pmul_comm ... = repr (b * a) : repr_mul) ▸ !equiv.refl) private theorem pmul_assoc_prep {p1 p2 q1 q2 r1 r2 : ℕ} : ((p1*q1+p2*q2)*r1+(p1*q2+p2*q1)*r2, (p1*q1+p2*q2)*r2+(p1*q2+p2*q1)*r1) = (p1*(q1*r1+q2*r2)+p2*(q1*r2+q2*r1), p1*(q1*r2+q2*r1)+p2*(q1*r1+q2*r2)) := begin rewrite[+left_distrib,+right_distrib,*algebra.mul.assoc], exact (congr_arg2 pair (!add.comm4 ⬝ (!congr_arg !nat.add_comm)) (!add.comm4 ⬝ (!congr_arg !nat.add_comm))) end theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) := pmul_assoc_prep theorem mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) := eq_of_repr_equiv_repr ((calc repr (a * b * c) = pmul (repr (a * b)) (repr c) : repr_mul ... = pmul (pmul (repr a) (repr b)) (repr c) : repr_mul ... = pmul (repr a) (pmul (repr b) (repr c)) : pmul_assoc ... = pmul (repr a) (repr (b * c)) : repr_mul ... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl) theorem mul_one : Π (a : ℤ), a * 1 = a | (of_nat m) := !zero_add -- zero_add happens to be def. = to this thm | -[1+ m] := !nat.zero_add ▸ rfl theorem one_mul (a : ℤ) : 1 * a = a := mul.comm a 1 ▸ mul_one a private theorem mul_distrib_prep {a1 a2 b1 b2 c1 c2 : ℕ} : ((a1+b1)*c1+(a2+b2)*c2, (a1+b1)*c2+(a2+b2)*c1) = (a1*c1+a2*c2+(b1*c1+b2*c2), a1*c2+a2*c1+(b1*c2+b2*c1)) := begin rewrite +right_distrib, congruence, {rewrite add.comm4}, {rewrite add.comm4} end theorem mul.right_distrib (a b c : ℤ) : (a + b) * c = a * c + b * c := eq_of_repr_equiv_repr (calc repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul ... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl ... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : mul_distrib_prep ... = padd (repr (a * c)) (pmul (repr b) (repr c)) : repr_mul ... = padd (repr (a * c)) (repr (b * c)) : repr_mul ... ≡ repr (a * c + b * c) : repr_add) theorem mul.left_distrib (a b c : ℤ) : a * (b + c) = a * b + a * c := calc a * (b + c) = (b + c) * a : mul.comm ... = b * a + c * a : mul.right_distrib ... = a * b + c * a : mul.comm ... = a * b + a * c : mul.comm theorem zero_ne_one : (0 : int) ≠ 1 := assume H : 0 = 1, !succ_ne_zero (of_nat.inj H)⁻¹ theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 := or.imp eq_zero_of_nat_abs_eq_zero eq_zero_of_nat_abs_eq_zero (eq_zero_or_eq_zero_of_mul_eq_zero (by rewrite [-nat_abs_mul, H])) protected definition integral_domain [reducible] [trans_instance] : algebra.integral_domain int := ⦃algebra.integral_domain, add := int.add, add_assoc := add.assoc, zero := 0, zero_add := zero_add, add_zero := add_zero, neg := int.neg, add_left_inv := add.left_inv, add_comm := add.comm, mul := int.mul, mul_assoc := mul.assoc, one := 1, one_mul := one_mul, mul_one := mul_one, left_distrib := mul.left_distrib, right_distrib := mul.right_distrib, mul_comm := mul.comm, zero_ne_one := zero_ne_one, eq_zero_or_eq_zero_of_mul_eq_zero := @eq_zero_or_eq_zero_of_mul_eq_zero⦄ definition int_has_sub [reducible] [instance] [priority int.prio] : has_sub int := has_sub.mk has_sub.sub definition int_has_dvd [reducible] [instance] [priority int.prio] : has_dvd int := has_dvd.mk has_dvd.dvd /- additional properties -/ theorem of_nat_sub {m n : ℕ} (H : m ≥ n) : of_nat (m - n) = of_nat m - of_nat n := assert m - n + n = m, from nat.sub_add_cancel H, begin symmetry, apply algebra.sub_eq_of_eq_add, rewrite [-of_nat_add, this] end theorem neg_succ_of_nat_eq' (m : ℕ) : -[1+ m] = -m - 1 := by rewrite [neg_succ_of_nat_eq, neg_add] definition succ (a : ℤ) := a + (succ zero) definition pred (a : ℤ) := a - (succ zero) theorem pred_succ (a : ℤ) : pred (succ a) = a := !sub_add_cancel theorem succ_pred (a : ℤ) : succ (pred a) = a := !add_sub_cancel theorem neg_succ (a : ℤ) : -succ a = pred (-a) := by rewrite [↑succ,neg_add] theorem succ_neg_succ (a : ℤ) : succ (-succ a) = -a := by rewrite [neg_succ,succ_pred] theorem neg_pred (a : ℤ) : -pred a = succ (-a) := by rewrite [↑pred,neg_sub,sub_eq_add_neg,add.comm] theorem pred_neg_pred (a : ℤ) : pred (-pred a) = -a := by rewrite [neg_pred,pred_succ] theorem pred_nat_succ (n : ℕ) : pred (nat.succ n) = n := pred_succ n theorem neg_nat_succ (n : ℕ) : -nat.succ n = pred (-n) := !neg_succ theorem succ_neg_nat_succ (n : ℕ) : succ (-nat.succ n) = -n := !succ_neg_succ definition rec_nat_on [unfold 2] {P : ℤ → Type} (z : ℤ) (H0 : P 0) (Hsucc : Π⦃n : ℕ⦄, P n → P (succ n)) (Hpred : Π⦃n : ℕ⦄, P (-n) → P (-nat.succ n)) : P z := int.rec (nat.rec H0 Hsucc) (λn, nat.rec H0 Hpred (nat.succ n)) z --the only computation rule of rec_nat_on which is not definitional theorem rec_nat_on_neg {P : ℤ → Type} (n : nat) (H0 : P zero) (Hsucc : Π⦃n : nat⦄, P n → P (succ n)) (Hpred : Π⦃n : nat⦄, P (-n) → P (-nat.succ n)) : rec_nat_on (-nat.succ n) H0 Hsucc Hpred = Hpred (rec_nat_on (-n) H0 Hsucc Hpred) := nat.rec rfl (λn H, rfl) n end int