-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad import logic.connectives.basic .inhabited inductive nonempty (A : Type) : Prop := | nonempty_intro : A → nonempty A definition nonempty_elim {A : Type} {B : Type} (H1 : nonempty A) (H2 : A → B) : B := nonempty_rec H2 H1 theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A := nonempty_intro (default A)