/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.basic Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad Basic operations on the natural numbers. -/ import logic.connectives data.num algebra.binary algebra.ring open eq.ops binary namespace nat /- a variant of add, defined by recursion on the first argument -/ definition addl (x y : ℕ) : ℕ := nat.rec y (λ n r, succ r) x infix `⊕`:65 := addl theorem addl.succ_right (n m : ℕ) : n ⊕ succ m = succ (n ⊕ m) := nat.induction_on n rfl (λ n₁ ih, calc succ n₁ ⊕ succ m = succ (n₁ ⊕ succ m) : rfl ... = succ (succ (n₁ ⊕ m)) : ih ... = succ (succ n₁ ⊕ m) : rfl) theorem add_eq_addl (x : ℕ) : ∀y, x + y = x ⊕ y := nat.induction_on x (λ y, nat.induction_on y rfl (λ y₁ ih, calc zero + succ y₁ = succ (zero + y₁) : rfl ... = succ (zero ⊕ y₁) : {ih} ... = zero ⊕ (succ y₁) : rfl)) (λ x₁ ih₁ y, nat.induction_on y (calc succ x₁ + zero = succ (x₁ + zero) : rfl ... = succ (x₁ ⊕ zero) : {ih₁ zero} ... = succ x₁ ⊕ zero : rfl) (λ y₁ ih₂, calc succ x₁ + succ y₁ = succ (succ x₁ + y₁) : rfl ... = succ (succ x₁ ⊕ y₁) : {ih₂} ... = succ x₁ ⊕ succ y₁ : addl.succ_right)) /- successor and predecessor -/ theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 := assume H, no_confusion H -- add_rewrite succ_ne_zero theorem pred.zero : pred 0 = 0 := rfl theorem pred.succ (n : ℕ) : pred (succ n) = n := rfl theorem eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) := induction_on n (or.inl rfl) (take m IH, or.inr (show succ m = succ (pred (succ m)), from congr_arg succ !pred.succ⁻¹)) theorem exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : ∃k : ℕ, n = succ k := exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H) theorem succ.inj {n m : ℕ} (H : succ n = succ m) : n = m := no_confusion H (λe, e) theorem succ.ne_self {n : ℕ} : succ n ≠ n := induction_on n (take H : 1 = 0, have ne : 1 ≠ 0, from !succ_ne_zero, absurd H ne) (take k IH H, IH (succ.inj H)) theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B := have H : n = n → B, from cases_on n H1 H2, H rfl theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1) (H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a := have stronger : P a ∧ P (succ a), from induction_on a (and.intro H1 H2) (take k IH, have IH1 : P k, from and.elim_left IH, have IH2 : P (succ k), from and.elim_right IH, and.intro IH2 (H3 k IH1 IH2)), and.elim_left stronger theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m) (H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m := have general : ∀m, P n m, from induction_on n (take m : ℕ, H1 m) (take k : ℕ, assume IH : ∀m, P k m, take m : ℕ, cases_on m (H2 k) (take l, (H3 k l (IH l)))), general m /- addition -/ theorem add_zero (n : ℕ) : n + 0 = n := rfl theorem add_succ (n m : ℕ) : n + succ m = succ (n + m) := rfl theorem zero_add (n : ℕ) : 0 + n = n := induction_on n !add_zero (take m IH, show 0 + succ m = succ m, from calc 0 + succ m = succ (0 + m) : add_succ ... = succ m : IH) theorem add.succ_left (n m : ℕ) : (succ n) + m = succ (n + m) := induction_on m (!add_zero ▸ !add_zero) (take k IH, calc succ n + succ k = succ (succ n + k) : add_succ ... = succ (succ (n + k)) : IH ... = succ (n + succ k) : add_succ) theorem add.comm (n m : ℕ) : n + m = m + n := induction_on m (!add_zero ⬝ !zero_add⁻¹) (take k IH, calc n + succ k = succ (n+k) : add_succ ... = succ (k + n) : IH ... = succ k + n : add.succ_left) theorem succ_add_eq_add_succ (n m : ℕ) : succ n + m = n + succ m := !add.succ_left ⬝ !add_succ⁻¹ theorem add.assoc (n m k : ℕ) : (n + m) + k = n + (m + k) := induction_on k (!add_zero ▸ !add_zero) (take l IH, calc (n + m) + succ l = succ ((n + m) + l) : add_succ ... = succ (n + (m + l)) : IH ... = n + succ (m + l) : add_succ ... = n + (m + succ l) : add_succ) theorem add.left_comm (n m k : ℕ) : n + (m + k) = m + (n + k) := left_comm add.comm add.assoc n m k theorem add.right_comm (n m k : ℕ) : n + m + k = n + k + m := right_comm add.comm add.assoc n m k theorem add.cancel_left {n m k : ℕ} : n + m = n + k → m = k := induction_on n (take H : 0 + m = 0 + k, !zero_add⁻¹ ⬝ H ⬝ !zero_add) (take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k), have H2 : succ (n + m) = succ (n + k), from calc succ (n + m) = succ n + m : add.succ_left ... = succ n + k : H ... = succ (n + k) : add.succ_left, have H3 : n + m = n + k, from succ.inj H2, IH H3) theorem add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k := have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm, add.cancel_left H2 theorem eq_zero_of_add_eq_zero_right {n m : ℕ} : n + m = 0 → n = 0 := induction_on n (take (H : 0 + m = 0), rfl) (take k IH, assume H : succ k + m = 0, absurd (show succ (k + m) = 0, from calc succ (k + m) = succ k + m : add.succ_left ... = 0 : H) !succ_ne_zero) theorem eq_zero_of_add_eq_zero_left {n m : ℕ} (H : n + m = 0) : m = 0 := eq_zero_of_add_eq_zero_right (!add.comm ⬝ H) theorem add.eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 := and.intro (eq_zero_of_add_eq_zero_right H) (eq_zero_of_add_eq_zero_left H) theorem add_one (n : ℕ) : n + 1 = succ n := !add_zero ▸ !add_succ theorem one_add (n : ℕ) : 1 + n = succ n := !zero_add ▸ !add.succ_left /- multiplication -/ theorem mul_zero (n : ℕ) : n * 0 = 0 := rfl theorem mul_succ (n m : ℕ) : n * succ m = n * m + n := rfl -- commutativity, distributivity, associativity, identity theorem zero_mul (n : ℕ) : 0 * n = 0 := induction_on n !mul_zero (take m IH, !mul_succ ⬝ !add_zero ⬝ IH) theorem succ_mul (n m : ℕ) : (succ n) * m = (n * m) + m := induction_on m (!mul_zero ⬝ !mul_zero⁻¹ ⬝ !add_zero⁻¹) (take k IH, calc succ n * succ k = succ n * k + succ n : mul_succ ... = n * k + k + succ n : IH ... = n * k + (k + succ n) : add.assoc ... = n * k + (succ n + k) : add.comm ... = n * k + (n + succ k) : succ_add_eq_add_succ ... = n * k + n + succ k : add.assoc ... = n * succ k + succ k : mul_succ) theorem mul.comm (n m : ℕ) : n * m = m * n := induction_on m (!mul_zero ⬝ !zero_mul⁻¹) (take k IH, calc n * succ k = n * k + n : mul_succ ... = k * n + n : IH ... = (succ k) * n : succ_mul) theorem mul.right_distrib (n m k : ℕ) : (n + m) * k = n * k + m * k := induction_on k (calc (n + m) * 0 = 0 : mul_zero ... = 0 + 0 : add_zero ... = n * 0 + 0 : mul_zero ... = n * 0 + m * 0 : mul_zero) (take l IH, calc (n + m) * succ l = (n + m) * l + (n + m) : mul_succ ... = n * l + m * l + (n + m) : IH ... = n * l + m * l + n + m : add.assoc ... = n * l + n + m * l + m : add.right_comm ... = n * l + n + (m * l + m) : add.assoc ... = n * succ l + (m * l + m) : mul_succ ... = n * succ l + m * succ l : mul_succ) theorem mul.left_distrib (n m k : ℕ) : n * (m + k) = n * m + n * k := calc n * (m + k) = (m + k) * n : mul.comm ... = m * n + k * n : mul.right_distrib ... = n * m + k * n : mul.comm ... = n * m + n * k : mul.comm theorem mul.assoc (n m k : ℕ) : (n * m) * k = n * (m * k) := induction_on k (calc (n * m) * 0 = n * (m * 0) : mul_zero) (take l IH, calc (n * m) * succ l = (n * m) * l + n * m : mul_succ ... = n * (m * l) + n * m : IH ... = n * (m * l + m) : mul.left_distrib ... = n * (m * succ l) : mul_succ) theorem mul_one (n : ℕ) : n * 1 = n := calc n * 1 = n * 0 + n : mul_succ ... = 0 + n : mul_zero ... = n : zero_add theorem one_mul (n : ℕ) : 1 * n = n := calc 1 * n = n * 1 : mul.comm ... = n : mul_one theorem eq_zero_or_eq_zero_of_mul_eq_zero {n m : ℕ} : n * m = 0 → n = 0 ∨ m = 0 := cases_on n (assume H, or.inl rfl) (take n', cases_on m (assume H, or.inr rfl) (take m', assume H : succ n' * succ m' = 0, absurd ((calc 0 = succ n' * succ m' : H ... = succ n' * m' + succ n' : mul_succ ... = succ (succ n' * m' + n') : add_succ)⁻¹) !succ_ne_zero)) section port_algebra open algebra protected definition comm_semiring [instance] : algebra.comm_semiring nat := algebra.comm_semiring.mk add add.assoc zero zero_add add_zero add.comm mul mul.assoc (succ zero) one_mul mul_one mul.left_distrib mul.right_distrib zero_mul mul_zero (ne.symm (succ_ne_zero zero)) mul.comm theorem mul.left_comm : ∀a b c : ℕ, a * (b * c) = b * (a * c) := algebra.mul.left_comm theorem mul.right_comm : ∀a b c : ℕ, (a * b) * c = (a * c) * b := algebra.mul.right_comm definition dvd (a b : ℕ) : Prop := algebra.dvd a b infix `|` := dvd theorem dvd.intro : ∀{a b c : ℕ} (H : a * b = c), a | c := @algebra.dvd.intro _ _ theorem dvd.ex : ∀{a b : ℕ} (H : a | b), ∃c, a * c = b := @algebra.dvd.ex _ _ theorem dvd.elim : ∀{P : Prop} {a b : ℕ} (H₁ : a | b) (H₂ : ∀c, a * c = b → P), P := @algebra.dvd.elim _ _ theorem dvd.refl : ∀a : ℕ, a | a := algebra.dvd.refl theorem dvd.trans : ∀{a b c : ℕ} (H₁ : a | b) (H₂ : b | c), a | c := @algebra.dvd.trans _ _ theorem eq_zero_of_zero_dvd : ∀{a : ℕ} (H : 0 | a), a = 0 := @algebra.eq_zero_of_zero_dvd _ _ theorem dvd_zero : ∀a : ℕ, a | 0 := algebra.dvd_zero theorem one_dvd : ∀a : ℕ, 1 | a := algebra.one_dvd theorem dvd_mul_right : ∀a b : ℕ, a | a * b := algebra.dvd_mul_right theorem dvd_mul_left : ∀a b : ℕ, a | b * a := algebra.dvd_mul_left theorem dvd_mul_of_dvd_left : ∀{a b : ℕ} (H : a | b) (c : ℕ), a | b * c := @algebra.dvd_mul_of_dvd_left _ _ theorem dvd_mul_of_dvd_right : ∀{a b : ℕ} (H : a | b) (c : ℕ), a | c * b := @algebra.dvd_mul_of_dvd_right _ _ theorem mul_dvd_mul : ∀{a b c d : ℕ}, a | b → c | d → a * c | b * d := @algebra.mul_dvd_mul _ _ theorem dvd_of_mul_right_dvd : ∀{a b c : ℕ}, a * b | c → a | c := @algebra.dvd_of_mul_right_dvd _ _ theorem dvd_of_mul_left_dvd : ∀{a b c : ℕ}, a * b | c → b | c := @algebra.dvd_of_mul_left_dvd _ _ theorem dvd_add : ∀{a b c : ℕ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _ end port_algebra end nat