import data.nat data.prod open nat well_founded decidable prod eq.ops -- Auxiliary lemma used to justify recursive call private definition lt_aux {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos) definition wdiv.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (lt_aux H) y + 1 else zero definition wdiv (x y : nat) := fix wdiv.F x y theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 := congr_fun (well_founded.fix_eq wdiv.F x) y example : wdiv 5 2 = 2 := rfl example : wdiv 9 3 = 3 := rfl -- There is a little bit of cheating in the definition above. -- I avoid the packing/unpacking into tuples. -- The actual definitional package would not do that. -- It will always pack things. definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel) definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := prod.lex.wf lt.wf lt.wf infixl `≺`:50 := pair_nat.lt -- Recursive lemma used to justify recursive call definition plt_aux (x y : nat) (H : 0 < y ∧ y ≤ x) : (x - y, y) ≺ (x, y) := !lex.left (lt_aux H) definition pdiv.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat := prod.cases_on p₁ (λ x y f, if H : 0 < y ∧ y ≤ x then f (x - y, y) (plt_aux x y H) + 1 else zero) definition pdiv (x y : nat) := fix pdiv.F (x, y) theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero := well_founded.fix_eq pdiv.F (x, y) example : pdiv 17 2 = 8 := rfl