/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.equiv Author: Jeremy Avigad, Jakob von Raumer Ported from Coq HoTT -/ prelude import .path .function open eq function /- Equivalences -/ -- This is our definition of equivalence. In the HoTT-book it's called -- ihae (half-adjoint equivalence). structure is_equiv [class] {A B : Type} (f : A → B) := (inv : B → A) (retr : (f ∘ inv) ∼ id) (sect : (inv ∘ f) ∼ id) (adj : Πx, retr (f x) = ap f (sect x)) -- A more bundled version of equivalence structure equiv (A B : Type) := (to_fun : A → B) (to_is_equiv : is_equiv to_fun) namespace is_equiv /- Some instances and closure properties of equivalences -/ postfix `⁻¹` := inv --a second notation for the inverse, which is not overloaded postfix [parsing-only] `⁻¹ᵉ`:100 := inv section variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B} -- The identity function is an equivalence. definition is_equiv_id : (@is_equiv A A id) := is_equiv.mk id (λa, idp) (λa, idp) (λa, idp) -- The composition of two equivalences is, again, an equivalence. definition is_equiv_compose [Hf : is_equiv f] [Hg : is_equiv g] : (is_equiv (g ∘ f)) := is_equiv.mk ((inv f) ∘ (inv g)) (λc, ap g (retr f (g⁻¹ c)) ⬝ retr g c) (λa, ap (inv f) (sect g (f a)) ⬝ sect f a) (λa, (whisker_left _ (adj g (f a))) ⬝ (ap_con g _ _)⁻¹ ⬝ ap02 g (ap_con_eq_con (retr f) (sect g (f a))⁻¹ ⬝ (ap_compose (inv f) f _ ◾ adj f a) ⬝ (ap_con f _ _)⁻¹ ) ⬝ (ap_compose f g _)⁻¹ ) -- Any function equal to an equivalence is an equivlance as well. definition is_equiv_eq_closed [Hf : is_equiv f] (Heq : f = f') : (is_equiv f') := eq.rec_on Heq Hf -- Any function pointwise equal to an equivalence is an equivalence as well. definition homotopy_closed [Hf : is_equiv f] (Hty : f ∼ f') : (is_equiv f') := let sect' := (λ b, (Hty (inv f b))⁻¹ ⬝ retr f b) in let retr' := (λ a, (ap (inv f) (Hty a))⁻¹ ⬝ sect f a) in let adj' := (λ (a : A), let ff'a := Hty a in let invf := inv f in let secta := sect f a in let retrfa := retr f (f a) in let retrf'a := retr f (f' a) in have eq1 : _ = _, from calc ap f secta ⬝ ff'a = retrfa ⬝ ff'a : ap _ (@adj _ _ f _ _) ... = ap (f ∘ invf) ff'a ⬝ retrf'a : ap_con_eq_con ... = ap f (ap invf ff'a) ⬝ retrf'a : ap_compose invf f, have eq2 : _ = _, from calc retrf'a = (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : eq_inv_con_of_con_eq _ _ _ (eq1⁻¹) ... = ap f (ap invf ff'a)⁻¹ ⬝ (ap f secta ⬝ Hty a) : ap_inv invf ff'a ... = ap f (ap invf ff'a)⁻¹ ⬝ (Hty (invf (f a)) ⬝ ap f' secta) : ap_con_eq_con_ap ... = (ap f (ap invf ff'a)⁻¹ ⬝ Hty (invf (f a))) ⬝ ap f' secta : con.assoc ... = (ap f ((ap invf ff'a)⁻¹) ⬝ Hty (invf (f a))) ⬝ ap f' secta : ap_inv ... = (Hty (invf (f' a)) ⬝ ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : ap_con_eq_con_ap ... = (Hty (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : ap_inv ... = Hty (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : con.assoc, have eq3 : _ = _, from calc (Hty (invf (f' a)))⁻¹ ⬝ retrf'a = (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : inv_con_eq_of_eq_con _ _ _ eq2 ... = (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : ap_inv ... = ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : ap_con, eq3) in is_equiv.mk (inv f) sect' retr' adj' end context parameters {A B : Type} (f : A → B) (g : B → A) (ret : f ∘ g ∼ id) (sec : g ∘ f ∼ id) private definition adjointify_sect' : g ∘ f ∼ id := (λx, ap g (ap f (inverse (sec x))) ⬝ ap g (ret (f x)) ⬝ sec x) private definition adjointify_adj' : Π (x : A), ret (f x) = ap f (adjointify_sect' x) := (λ (a : A), let fgretrfa := ap f (ap g (ret (f a))) in let fgfinvsect := ap f (ap g (ap f ((sec a)⁻¹))) in let fgfa := f (g (f a)) in let retrfa := ret (f a) in have eq1 : ap f (sec a) = _, from calc ap f (sec a) = idp ⬝ ap f (sec a) : !idp_con⁻¹ ... = (ret (f a) ⬝ (ret (f a)⁻¹)) ⬝ ap f (sec a) : {!con.left_inv⁻¹} ... = ((ret (fgfa))⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : {!con_ap_eq_con⁻¹} ... = ((ret (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _} ... = (ret (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : !con.assoc, have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)), from !con_idp ⬝ eq1, have eq3 : idp = _, from calc idp = (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : eq_inv_con_of_con_eq _ _ _ eq2 ... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : !con.assoc' ... = (ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : {!ap_inv⁻¹} ... = ((ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : !con.assoc' ... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sec a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sec a) : {!con_ap_eq_con⁻¹} ... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _} ... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : {!con.assoc'⁻¹} ... = retrfa⁻¹ ⬝ ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : {!ap_con⁻¹} ... = retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : !con.assoc'⁻¹ ... = retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a) : {!ap_con⁻¹}, have eq4 : ret (f a) = ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a), from eq_of_idp_eq_inv_con _ _ eq3, eq4) definition adjointify : is_equiv f := is_equiv.mk g ret adjointify_sect' adjointify_adj' end section variables {A B: Type} (f : A → B) --The inverse of an equivalence is, again, an equivalence. definition is_equiv_inv [instance] [Hf : is_equiv f] : (is_equiv (inv f)) := adjointify (inv f) f (sect f) (retr f) end section variables {A B C : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f] include Hf variable (g : B → C) definition cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) := have Hfinv [visible] : is_equiv (f⁻¹), from is_equiv_inv f, @homotopy_closed _ _ _ _ (is_equiv_compose (f⁻¹) (g ∘ f)) (λb, ap g (@retr _ _ f _ b)) definition cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) := have Hfinv [visible] : is_equiv (f⁻¹), from is_equiv_inv f, @homotopy_closed _ _ _ _ (is_equiv_compose (f ∘ g) (f⁻¹)) (λa, sect f (g a)) --Rewrite rules definition eq_of_eq_inv {x : A} {y : B} (p : x = (inv f) y) : (f x = y) := (ap f p) ⬝ (@retr _ _ f _ y) definition eq_of_inv_eq {x : A} {y : B} (p : (inv f) y = x) : (y = f x) := (eq_of_eq_inv f (p⁻¹))⁻¹ definition inv_eq_of_eq {x : B} {y : A} (p : x = f y) : (inv f) x = y := ap (f⁻¹) p ⬝ sect f y definition eq_inv_of_eq {x : B} {y : A} (p : f y = x) : y = (inv f) x := (inv_eq_of_eq f (p⁻¹))⁻¹ definition is_equiv_ap [instance] (x y : A) : is_equiv (ap f) := adjointify (ap f) (λq, (inverse (sect f x)) ⬝ ap (f⁻¹) q ⬝ sect f y) (λq, !ap_con ⬝ whisker_right !ap_con _ ⬝ ((!ap_inv ⬝ inverse2 ((adj f _)⁻¹)) ◾ (inverse (ap_compose (f⁻¹) f _)) ◾ (adj f _)⁻¹) ⬝ con_ap_con_eq_con_con (retr f) _ _ ⬝ whisker_right !con.right_inv _ ⬝ !idp_con) (λp, whisker_right (whisker_left _ ((ap_compose f (f⁻¹) _)⁻¹)) _ ⬝ con_ap_con_eq_con_con (sect f) _ _ ⬝ whisker_right !con.right_inv _ ⬝ !idp_con) -- The function equiv_rect says that given an equivalence f : A → B, -- and a hypothesis from B, one may always assume that the hypothesis -- is in the image of e. -- In fibrational terms, if we have a fibration over B which has a section -- once pulled back along an equivalence f : A → B, then it has a section -- over all of B. definition equiv_rect (P : B → Type) : (Πx, P (f x)) → (Πy, P y) := (λg y, eq.transport _ (retr f y) (g (f⁻¹ y))) definition equiv_rect_comp (P : B → Type) (df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x := calc equiv_rect f P df (f x) = transport P (retr f (f x)) (df (f⁻¹ (f x))) : idp ... = transport P (eq.ap f (sect f x)) (df (f⁻¹ (f x))) : adj f ... = transport (P ∘ f) (sect f x) (df (f⁻¹ (f x))) : transport_compose ... = df x : apD df (sect f x) end --Transporting is an equivalence definition is_equiv_tr [instance] {A : Type} (P : A → Type) {x y : A} (p : x = y) : (is_equiv (transport P p)) := is_equiv.mk (transport P (p⁻¹)) (tr_inv_tr P p) (inv_tr_tr P p) (tr_inv_tr_lemma P p) end is_equiv open is_equiv namespace equiv attribute to_is_equiv [instance] infix `≃`:25 := equiv context parameters {A B C : Type} (eqf : A ≃ B) private definition f : A → B := to_fun eqf private definition Hf [instance] : is_equiv f := to_is_equiv eqf protected definition refl : A ≃ A := equiv.mk id is_equiv.is_equiv_id definition trans (eqg: B ≃ C) : A ≃ C := equiv.mk ((to_fun eqg) ∘ f) (is_equiv_compose f (to_fun eqg)) definition equiv_of_eq_of_equiv (f' : A → B) (Heq : to_fun eqf = f') : A ≃ B := equiv.mk f' (is_equiv.is_equiv_eq_closed f Heq) definition symm : B ≃ A := equiv.mk (is_equiv.inv f) !is_equiv.is_equiv_inv definition equiv_ap (P : A → Type) {x y : A} {p : x = y} : (P x) ≃ (P y) := equiv.mk (eq.transport P p) (is_equiv_tr P p) end --we need this theorem for the funext_of_ua proof theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ := eq.rec_on p idp -- calc enviroment -- Note: Calculating with substitutions needs univalence calc_trans equiv.trans calc_refl equiv.refl calc_symm equiv.symm end equiv