/- Copyright (c) 2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer The Smash Product of Types -/ import hit.pushout .wedge .cofiber .susp .sphere open eq pushout prod pointed Pointed is_trunc definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B := begin fconstructor, intro x, induction x with [a, b], exact (a, point B), exact (point A, b), do 2 reflexivity end definition Smash (A B : Type*) := Cofiber (product_of_wedge A B) open sphere susp unit namespace smash protected definition prec {X Y : Type*} {P : Smash X Y → Type} (pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆)) (px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y))) (py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y)) (pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy (pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x))) (px (Point X)) (glue ⋆) (py (Point Y))) : Π s, P s := begin intro s, induction s, induction x, exact ps, induction x with [x, y], exact pxy x y, induction x with [x, y, u], exact px x, exact py y, induction u, exact pg, end protected definition prec_on {X Y : Type*} {P : Smash X Y → Type} (s : Smash X Y) (pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆)) (px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y))) (py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y)) (pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy (pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x))) (px (Point X)) (glue ⋆) (py (Point Y))) : P s := smash.prec pxy ps px py pg s /- definition smash_bool (X : Type*) : Smash X Bool ≃* X := begin fconstructor, { fconstructor, { intro x, fapply cofiber.pelim_on x, clear x, exact point X, intro p, cases p with [x', b], cases b with [x, x'], exact point X, exact x', clear x, intro w, induction w with [y, b], reflexivity, cases b, reflexivity, reflexivity, esimp, apply eq_pathover, refine !ap_constant ⬝ph _, cases x, esimp, apply hdeg_square, apply inverse, apply concat, apply ap_compose (λ a, prod.cases_on a _), apply concat, apply ap _ !elim_glue, reflexivity }, reflexivity }, { fapply is_equiv.adjointify, { intro x, apply inr, exact pair x bool.tt }, { intro x, reflexivity }, { intro s, esimp, induction s, { cases x, apply (glue (inr bool.tt))⁻¹ }, { cases x with [x, b], cases b, apply inverse, apply concat, apply (glue (inl x))⁻¹, apply (glue (inr bool.tt)), reflexivity }, { esimp, apply eq_pathover, induction x, esimp, apply hinverse, krewrite ap_id, apply move_bot_of_left, krewrite con.right_inv, refine _ ⬝hp !(ap_compose (λ a, inr (pair a _)))⁻¹, apply transpose, apply square_of_eq_bot, rewrite [con_idp, con.left_inv], apply inverse, apply concat, apply ap (ap _), } } } definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X := begin fconstructor, { fconstructor, intro x, induction x, }, end-/ end smash