--- Copyright (c) 2014 Microsoft Corporation. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Jeremy Avigad import logic.connectives.basic logic.connectives.eq struc.relation namespace relation using relation -- Congruences for logic -- --------------------- theorem congr_not : congr iff iff not := congr_mk (take a b, assume H : a ↔ b, iff_intro (assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2)) (assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2))) theorem congr_and : congr2 iff iff iff and := congr2_mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2)) (assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2))) theorem congr_or : congr2 iff iff iff or := congr2_mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2)) (assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2))) theorem congr_imp : congr2 iff iff iff imp := congr2_mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1))) (assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1)))) theorem congr_iff : congr2 iff iff iff iff := congr2_mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2)) (assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2)))) -- theorem congr_const_iff [instance] := congr.const iff iff_refl theorem congr_not_compose [instance] := congr.compose congr_not theorem congr_and_compose [instance] := congr.compose21 congr_and theorem congr_or_compose [instance] := congr.compose21 congr_or theorem congr_implies_compose [instance] := congr.compose21 congr_imp theorem congr_iff_compose [instance] := congr.compose21 congr_iff -- Generalized substitution -- ------------------------ -- TODO: note that the target has to be "iff". Otherwise, there is not enough -- information to infer an mp-like relation. namespace general_operations theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ {C : congr R iff P} {a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (congr.app C H) H1 end general_operations -- = is an equivalence relation -- ---------------------------- theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive (@eq T) := relation.is_reflexive_mk (@refl T) theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric (@eq T) := relation.is_symmetric_mk (@symm T) theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive (@eq T) := relation.is_transitive_mk (@trans T) -- TODO: this is only temporary, needed to inform Lean that is_equivalence is a class theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) := relation.is_equivalence_mk _ _ _ -- iff is an equivalence relation -- ------------------------------ theorem is_reflexive_iff [instance] : relation.is_reflexive iff := relation.is_reflexive_mk (@iff_refl) theorem is_symmetric_iff [instance] : relation.is_symmetric iff := relation.is_symmetric_mk (@iff_symm) theorem is_transitive_iff [instance] : relation.is_transitive iff := relation.is_transitive_mk (@iff_trans) -- Mp-like for iff -- --------------- theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : relation.mp_like H := relation.mp_like_mk (iff_elim_left H) -- Substition for iff -- ------------------ theorem subst_iff {P : Prop → Prop} {C : congr iff iff P} {a b : Prop} (H : a ↔ b) (H1 : P a) : P b := @general_operations.subst Prop iff P C a b H H1 -- Support for calculations with iff -- ---------------- calc_refl iff_refl calc_trans iff_trans calc_subst subst_iff namespace iff_ops postfix `⁻¹`:100 := iff_symm infixr `⬝`:75 := iff_trans infixr `▸`:75 := subst_iff abbreviation refl := iff_refl abbreviation symm := @iff_symm abbreviation trans := @iff_trans abbreviation subst := @subst_iff abbreviation mp := @iff_mp end iff_ops -- Boolean calculations -- -------------------- -- TODO: move these somewhere theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := calc (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _ ... ↔ a ∨ (c ∨ b) : {or_comm b c} ... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _) -- TODO: add or_left_comm, and_right_comm, and_left_comm -- TODO: this is only temporary, until the calc bug is fixed calc_subst subst end relation