/- Copyright (c) 2014-15 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.binary Authors: Leonardo de Moura, Jeremy Avigad General properties of binary operations. -/ open eq.ops function equiv namespace binary section variable {A : Type} variables (op₁ : A → A → A) (inv : A → A) (one : A) local notation a * b := op₁ a b local notation a ⁻¹ := inv a local notation 1 := one definition commutative [reducible] := ∀a b, a * b = b * a definition associative [reducible] := ∀a b c, (a * b) * c = a * (b * c) definition left_identity [reducible] := ∀a, 1 * a = a definition right_identity [reducible] := ∀a, a * 1 = a definition left_inverse [reducible] := ∀a, a⁻¹ * a = 1 definition right_inverse [reducible] := ∀a, a * a⁻¹ = 1 definition left_cancelative [reducible] := ∀a b c, a * b = a * c → b = c definition right_cancelative [reducible] := ∀a b c, a * b = c * b → a = c definition inv_op_cancel_left [reducible] := ∀a b, a⁻¹ * (a * b) = b definition op_inv_cancel_left [reducible] := ∀a b, a * (a⁻¹ * b) = b definition inv_op_cancel_right [reducible] := ∀a b, a * b⁻¹ * b = a definition op_inv_cancel_right [reducible] := ∀a b, a * b * b⁻¹ = a variable (op₂ : A → A → A) local notation a + b := op₂ a b definition left_distributive [reducible] := ∀a b c, a * (b + c) = a * b + a * c definition right_distributive [reducible] := ∀a b c, (a + b) * c = a * c + b * c definition right_commutative [reducible] {B : Type} (f : B → A → B) := ∀ b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁ definition left_commutative [reducible] {B : Type} (f : A → B → B) := ∀ a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b) end section variable {A : Type} variable {f : A → A → A} variable H_comm : commutative f variable H_assoc : associative f local infixl `*` := f theorem left_comm : left_commutative f := take a b c, calc a*(b*c) = (a*b)*c : H_assoc ... = (b*a)*c : H_comm ... = b*(a*c) : H_assoc theorem right_comm : right_commutative f := take a b c, calc (a*b)*c = a*(b*c) : H_assoc ... = a*(c*b) : H_comm ... = (a*c)*b : H_assoc end section variable {A : Type} variable {f : A → A → A} variable H_assoc : associative f local infixl `*` := f theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) := calc (a*b)*(c*d) = a*(b*(c*d)) : H_assoc ... = a*((b*c)*d) : H_assoc end definition right_commutative_compose_right [reducible] {A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) := λ a b₁ b₂, !rcomm definition left_commutative_compose_left [reducible] {A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) := λ a b₁ b₂, !lcomm end binary open eq namespace is_equiv definition inv_preserve_binary {A B : Type} (f : A → B) [H : is_equiv f] (mA : A → A → A) (mB : B → B → B) (H : Π(a a' : A), mB (f a) (f a') = f (mA a a')) (b b' : B) : f⁻¹ (mB b b') = mA (f⁻¹ b) (f⁻¹ b') := begin have H2 : f⁻¹ (mB (f (f⁻¹ b)) (f (f⁻¹ b'))) = f⁻¹ (f (mA (f⁻¹ b) (f⁻¹ b'))), from ap f⁻¹ !H, rewrite [+right_inv f at H2,left_inv f at H2,▸* at H2,H2] end definition preserve_binary_of_inv_preserve {A B : Type} (f : A → B) [H : is_equiv f] (mA : A → A → A) (mB : B → B → B) (H : Π(b b' : B), mA (f⁻¹ b) (f⁻¹ b') = f⁻¹ (mB b b')) (a a' : A) : f (mA a a') = mB (f a) (f a') := begin have H2 : f (mA (f⁻¹ (f a)) (f⁻¹ (f a'))) = f (f⁻¹ (mB (f a) (f a'))), from ap f !H, rewrite [right_inv f at H2,+left_inv f at H2,▸* at H2,H2] end end is_equiv namespace equiv open is_equiv equiv.ops definition inv_preserve_binary {A B : Type} (f : A ≃ B) (mA : A → A → A) (mB : B → B → B) (H : Π(a a' : A), mB (f a) (f a') = f (mA a a')) (b b' : B) : f⁻¹ (mB b b') = mA (f⁻¹ b) (f⁻¹ b') := inv_preserve_binary f mA mB H b b' definition preserve_binary_of_inv_preserve {A B : Type} (f : A ≃ B) (mA : A → A → A) (mB : B → B → B) (H : Π(b b' : B), mA (f⁻¹ b) (f⁻¹ b') = f⁻¹ (mB b b')) (a a' : A) : f (mA a a') = mB (f a) (f a') := preserve_binary_of_inv_preserve f mA mB H a a' end equiv