/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn We define the fiber sequence of a pointed map f : X →* Y. We mostly follow the proof in section 8.4 of the book. PART 1: We define a sequence fiber_sequence as in Definition 8.4.3. It has types X(n) : Type* X(0) := Y, X(1) := X, X(n+1) := fiber (f(n)) with functions f(n) : X(n+1) →* X(n) f(0) := f f(n+1) := point (f(n)) [this is the first projection] We prove that this is an exact sequence. Then we prove Lemma 8.4.3, by showing that X(n+3) ≃* Ω(X(n)) and that this equivalence sends the pointed map f(n+3) to -Ω(f(n)), i.e. the composition of Ω(f(n)) with path inversion. Using this equivalence we get a boundary_map : Ω(Y) → pfiber f. PART 2: Now we can define a new fiber sequence X'(n) : Type*, and here we slightly diverge from the book. We define it as X'(0) := Y, X'(1) := X, X'(2) := fiber f X'(n+3) := Ω(X'(n)) with maps f'(n) : X'(n+1) →* X'(n) f'(0) := f f'(1) := point f f'(2) := boundary_map f'(n+3) := Ω(f'(n)) This sequence is not equivalent to the previous sequence. The difference is in the signs. The sequence f has negative signs (i.e. is composed with the inverse maps) for n ≡ 3, 4, 5 mod 6. This sign information is captured by e : X'(n) ≃* X'(n) such that e(k) := 1 for k = 0,1,2,3 e(k+3) := Ω(e(k)) ∘ (-)⁻¹ for k > 0 Now the sequence (X', f' ∘ e) is equivalent to (X, f), Hence (X', f' ∘ e) is an exact sequence. We then prove that (X', f') is an exact sequence by using that there are other equivalences eₗ and eᵣ such that f' = eᵣ ∘ f' ∘ e f' ∘ eₗ = e ∘ f'. (this fact is type_chain_complex_cancel_aut and is_exact_at_t_cancel_aut in the file chain_complex) eₗ and eᵣ are almost the same as e, except that the places where the inverse is taken is slightly shifted: eᵣ = (-)⁻¹ for n ≡ 3, 4, 5 mod 6 and eᵣ = 1 otherwise e = (-)⁻¹ for n ≡ 4, 5, 6 mod 6 (except for n = 0) and e = 1 otherwise eₗ = (-)⁻¹ for n ≡ 5, 6, 7 mod 6 (except for n = 0, 1) and eₗ = 1 otherwise PART 3: We change the type over which the sequence of types and maps are indexed from ℕ to ℕ × 3 (where 3 is the finite type with 3 elements). The reason is that we have that X'(3n) = Ωⁿ(Y), but this equality is not definitionally true. Hence we cannot even state whether f'(3n) = Ωⁿ(f) without using transports. This gets ugly. However, if we use as index type ℕ × 3, we can do this. We can define Y : ℕ × 3 → Type* as Y(n, 0) := Ωⁿ(Y) Y(n, 1) := Ωⁿ(X) Y(n, 2) := Ωⁿ(fiber f) with maps g(n) : Y(S n) →* Y(n) (where the successor is defined in the obvious way) g(n, 0) := Ωⁿ(f) g(n, 1) := Ωⁿ(point f) g(n, 2) := Ωⁿ(boundary_map) ∘ cast Here "cast" is the transport over the equality Ωⁿ⁺¹(Y) = Ωⁿ(Ω(Y)). We show that the sequence (ℕ, X', f') is equivalent to (ℕ × 3, Y, g). PART 4: We get the long exact sequence of homotopy groups by taking the set-truncation of (Y, g). -/ import .chain_complex algebra.homotopy_group eq2 open eq pointed sigma fiber equiv is_equiv is_trunc nat trunc algebra function /-------------- PART 1 --------------/ namespace chain_complex section open sigma.ops definition fiber_sequence_helper [constructor] (v : Σ(X Y : Type*), X →* Y) : Σ(Z X : Type*), Z →* X := ⟨pfiber v.2.2, v.1, ppoint v.2.2⟩ definition fiber_sequence_helpern (v : Σ(X Y : Type*), X →* Y) (n : ℕ) : Σ(Z X : Type*), Z →* X := iterate fiber_sequence_helper n v end section open sigma.ops universe variable u parameters {X Y : pType.{u}} (f : X →* Y) include f definition fiber_sequence_carrier (n : ℕ) : Type* := (fiber_sequence_helpern ⟨X, Y, f⟩ n).2.1 definition fiber_sequence_fun (n : ℕ) : fiber_sequence_carrier (n + 1) →* fiber_sequence_carrier n := (fiber_sequence_helpern ⟨X, Y, f⟩ n).2.2 /- Definition 8.4.3 -/ definition fiber_sequence : type_chain_complex.{0 u} +ℕ := begin fconstructor, { exact fiber_sequence_carrier }, { exact fiber_sequence_fun }, { intro n x, cases n with n, { exact point_eq x }, { exact point_eq x }} end definition is_exact_fiber_sequence : is_exact_t fiber_sequence := λn x p, fiber.mk (fiber.mk x p) rfl /- (generalization of) Lemma 8.4.4(i)(ii) -/ definition fiber_sequence_carrier_pequiv (n : ℕ) : fiber_sequence_carrier (n+3) ≃* Ω(fiber_sequence_carrier n) := pfiber_ppoint_pequiv (fiber_sequence_fun n) definition fiber_sequence_carrier_pequiv_eq (n : ℕ) (x : fiber_sequence_carrier (n+1)) (p : fiber_sequence_fun n x = pt) (q : fiber_sequence_fun (n+1) (fiber.mk x p) = pt) : fiber_sequence_carrier_pequiv n (fiber.mk (fiber.mk x p) q) = !respect_pt⁻¹ ⬝ ap (fiber_sequence_fun n) q⁻¹ ⬝ p := fiber_ppoint_equiv_eq p q definition fiber_sequence_carrier_pequiv_inv_eq (n : ℕ) (p : Ω(fiber_sequence_carrier n)) : (fiber_sequence_carrier_pequiv n)⁻¹ᵉ* p = fiber.mk (fiber.mk pt (respect_pt (fiber_sequence_fun n) ⬝ p)) idp := fiber_ppoint_equiv_inv_eq (fiber_sequence_fun n) p /- TODO: prove naturality of pfiber_ppoint_pequiv in general -/ /- Lemma 8.4.4(iii) -/ definition fiber_sequence_fun_eq_helper (n : ℕ) (p : Ω(fiber_sequence_carrier (n + 1))) : fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) ((fiber_sequence_carrier_pequiv (n + 1))⁻¹ᵉ* p)) = Ω→ (fiber_sequence_fun n) p⁻¹ := begin refine ap (λx, fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) x)) (fiber_sequence_carrier_pequiv_inv_eq (n+1) p) ⬝ _, /- the following three lines are rewriting some reflexivities: -/ -- replace (n + 3) with (n + 2 + 1), -- refine ap (fiber_sequence_carrier_pequiv n) -- (fiber_sequence_fun_eq1 (n+2) _ idp) ⬝ _, refine fiber_sequence_carrier_pequiv_eq n pt (respect_pt (fiber_sequence_fun n)) _ ⬝ _, esimp, apply whisker_right, apply whisker_left, apply ap02, apply inverse2, apply idp_con, end theorem fiber_sequence_carrier_pequiv_eq_point_eq_idp (n : ℕ) : fiber_sequence_carrier_pequiv_eq n (Point (fiber_sequence_carrier (n+1))) (respect_pt (fiber_sequence_fun n)) (respect_pt (fiber_sequence_fun (n + 1))) = idp := begin apply con_inv_eq_idp, refine ap (λx, whisker_left _ (_ ⬝ x)) _ ⬝ _, { reflexivity}, { reflexivity}, refine ap (whisker_left _) (eq_transport_Fl_idp_left (fiber_sequence_fun n) (respect_pt (fiber_sequence_fun n))) ⬝ _, apply whisker_left_idp_con_eq_assoc end theorem fiber_sequence_fun_phomotopy_helper (n : ℕ) : (fiber_sequence_carrier_pequiv n ∘* fiber_sequence_fun (n + 3)) ∘* (fiber_sequence_carrier_pequiv (n + 1))⁻¹ᵉ* ~* Ω→ (fiber_sequence_fun n) ∘* pinverse := begin fapply phomotopy.mk, { exact chain_complex.fiber_sequence_fun_eq_helper f n}, { esimp, rewrite [idp_con], refine _ ⬝ whisker_left _ !idp_con⁻¹, apply whisker_right, apply whisker_left, exact chain_complex.fiber_sequence_carrier_pequiv_eq_point_eq_idp f n} end theorem fiber_sequence_fun_eq (n : ℕ) : Π(x : fiber_sequence_carrier (n + 4)), fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) x) = Ω→ (fiber_sequence_fun n) (fiber_sequence_carrier_pequiv (n + 1) x)⁻¹ := begin refine @(homotopy_of_inv_homotopy_pre (fiber_sequence_carrier_pequiv (n + 1))) !pequiv.to_is_equiv _ _ _, apply fiber_sequence_fun_eq_helper n end theorem fiber_sequence_fun_phomotopy (n : ℕ) : fiber_sequence_carrier_pequiv n ∘* fiber_sequence_fun (n + 3) ~* (Ω→ (fiber_sequence_fun n) ∘* pinverse) ∘* fiber_sequence_carrier_pequiv (n + 1) := begin apply phomotopy_of_pinv_right_phomotopy, apply fiber_sequence_fun_phomotopy_helper end definition boundary_map : Ω Y →* pfiber f := fiber_sequence_fun 2 ∘* (fiber_sequence_carrier_pequiv 0)⁻¹ᵉ* /-------------- PART 2 --------------/ /- Now we are ready to define the long exact sequence of loop spaces. First we define its carrier -/ definition loop_spaces : ℕ → Type* | 0 := Y | 1 := X | 2 := pfiber f | (k+3) := Ω (loop_spaces k) /- The maps between the homotopy groups -/ definition loop_spaces_fun : Π(n : ℕ), loop_spaces (n+1) →* loop_spaces n | 0 := proof f qed | 1 := proof ppoint f qed | 2 := proof boundary_map qed | (k+3) := proof Ω→ (loop_spaces_fun k) qed definition loop_spaces_fun_add3 [unfold_full] (n : ℕ) : loop_spaces_fun (n + 3) = Ω→ (loop_spaces_fun n) := idp definition fiber_sequence_pequiv_loop_spaces : Πn, fiber_sequence_carrier n ≃* loop_spaces n | 0 := by reflexivity | 1 := by reflexivity | 2 := by reflexivity | (k+3) := begin refine fiber_sequence_carrier_pequiv k ⬝e* _, apply loop_pequiv_loop, exact fiber_sequence_pequiv_loop_spaces k end definition fiber_sequence_pequiv_loop_spaces_add3 (n : ℕ) : fiber_sequence_pequiv_loop_spaces (n + 3) = Ω→ (fiber_sequence_pequiv_loop_spaces n) ∘* fiber_sequence_carrier_pequiv n := by reflexivity definition fiber_sequence_pequiv_loop_spaces_3_phomotopy : fiber_sequence_pequiv_loop_spaces 3 ~* fiber_sequence_carrier_pequiv 0 := begin refine pwhisker_right _ ap1_pid ⬝* _, apply pid_pcompose end definition pid_or_pinverse : Π(n : ℕ), loop_spaces n ≃* loop_spaces n | 0 := pequiv.rfl | 1 := pequiv.rfl | 2 := pequiv.rfl | 3 := pequiv.rfl | (k+4) := !pequiv_pinverse ⬝e* loop_pequiv_loop (pid_or_pinverse (k+1)) definition pid_or_pinverse_add4 (n : ℕ) : pid_or_pinverse (n + 4) = !pequiv_pinverse ⬝e* loop_pequiv_loop (pid_or_pinverse (n + 1)) := by reflexivity definition pid_or_pinverse_add4_rev (n : ℕ) : pid_or_pinverse (n + 4) ~* pinverse ∘* Ω→(pid_or_pinverse (n + 1)) := !ap1_pcompose_pinverse theorem fiber_sequence_phomotopy_loop_spaces : Π(n : ℕ), fiber_sequence_pequiv_loop_spaces n ∘* fiber_sequence_fun n ~* (loop_spaces_fun n ∘* pid_or_pinverse (n + 1)) ∘* fiber_sequence_pequiv_loop_spaces (n + 1) | 0 := proof proof phomotopy.rfl qed ⬝* pwhisker_right _ !pcompose_pid⁻¹* qed | 1 := by reflexivity | 2 := begin refine !pid_pcompose ⬝* _, replace loop_spaces_fun 2 with boundary_map, refine _ ⬝* pwhisker_left _ fiber_sequence_pequiv_loop_spaces_3_phomotopy⁻¹*, apply phomotopy_of_pinv_right_phomotopy, exact !pcompose_pid⁻¹* end | (k+3) := begin replace (k + 3 + 1) with (k + 1 + 3), rewrite [fiber_sequence_pequiv_loop_spaces_add3 k, fiber_sequence_pequiv_loop_spaces_add3 (k+1)], refine !passoc ⬝* _, refine pwhisker_left _ (fiber_sequence_fun_phomotopy k) ⬝* _, refine !passoc⁻¹* ⬝* _ ⬝* !passoc, apply pwhisker_right, replace (k + 1 + 3) with (k + 4), xrewrite [loop_spaces_fun_add3, pid_or_pinverse_add4, to_pmap_pequiv_trans], refine _ ⬝* !passoc⁻¹*, refine _ ⬝* pwhisker_left _ !passoc⁻¹*, refine _ ⬝* pwhisker_left _ (pwhisker_left _ !ap1_pcompose_pinverse), refine !passoc⁻¹* ⬝* _ ⬝* !passoc ⬝* !passoc, apply pwhisker_right, refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose ⬝* pwhisker_right _ !ap1_pcompose, apply ap1_phomotopy, exact fiber_sequence_phomotopy_loop_spaces k end definition pid_or_pinverse_right : Π(n : ℕ), loop_spaces n →* loop_spaces n | 0 := !pid | 1 := !pid | 2 := !pid | (k+3) := Ω→(pid_or_pinverse_right k) ∘* pinverse definition pid_or_pinverse_left : Π(n : ℕ), loop_spaces n →* loop_spaces n | 0 := pequiv.rfl | 1 := pequiv.rfl | 2 := pequiv.rfl | 3 := pequiv.rfl | 4 := pequiv.rfl | (k+5) := Ω→(pid_or_pinverse_left (k+2)) ∘* pinverse definition pid_or_pinverse_right_add3 (n : ℕ) : pid_or_pinverse_right (n + 3) = Ω→(pid_or_pinverse_right n) ∘* pinverse := by reflexivity definition pid_or_pinverse_left_add5 (n : ℕ) : pid_or_pinverse_left (n + 5) = Ω→(pid_or_pinverse_left (n+2)) ∘* pinverse := by reflexivity theorem pid_or_pinverse_commute_right : Π(n : ℕ), loop_spaces_fun n ~* pid_or_pinverse_right n ∘* loop_spaces_fun n ∘* pid_or_pinverse (n + 1) | 0 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed | 1 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed | 2 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed | (k+3) := begin replace (k + 3 + 1) with (k + 4), rewrite [pid_or_pinverse_right_add3, loop_spaces_fun_add3], refine _ ⬝* pwhisker_left _ (pwhisker_left _ !pid_or_pinverse_add4_rev⁻¹*), refine ap1_phomotopy (pid_or_pinverse_commute_right k) ⬝* _, refine !ap1_pcompose ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left, refine !ap1_pcompose ⬝* _ ⬝* !passoc ⬝* !passoc, apply pwhisker_right, refine _ ⬝* pwhisker_right _ !ap1_pcompose_pinverse, refine _ ⬝* !passoc⁻¹*, refine !pcompose_pid⁻¹* ⬝* pwhisker_left _ _, symmetry, apply pinverse_pinverse end theorem pid_or_pinverse_commute_left : Π(n : ℕ), loop_spaces_fun n ∘* pid_or_pinverse_left (n + 1) ~* pid_or_pinverse n ∘* loop_spaces_fun n | 0 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed | 1 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed | 2 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed | 3 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed | (k+4) := begin replace (k + 4 + 1) with (k + 5), rewrite [pid_or_pinverse_left_add5, pid_or_pinverse_add4], replace (k + 4) with (k + 1 + 3), rewrite [loop_spaces_fun_add3], refine !passoc⁻¹* ⬝* _ ⬝* !passoc⁻¹*, refine _ ⬝* pwhisker_left _ !ap1_pcompose_pinverse, refine _ ⬝* !passoc, apply pwhisker_right, refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, exact ap1_phomotopy (pid_or_pinverse_commute_left (k+1)) end definition LES_of_loop_spaces' [constructor] : type_chain_complex +ℕ := transfer_type_chain_complex fiber_sequence (λn, loop_spaces_fun n ∘* pid_or_pinverse (n + 1)) fiber_sequence_pequiv_loop_spaces fiber_sequence_phomotopy_loop_spaces definition LES_of_loop_spaces [constructor] : type_chain_complex +ℕ := type_chain_complex_cancel_aut LES_of_loop_spaces' loop_spaces_fun pid_or_pinverse pid_or_pinverse_right (λn x, idp) pid_or_pinverse_commute_right definition is_exact_LES_of_loop_spaces : is_exact_t LES_of_loop_spaces := begin intro n, refine is_exact_at_t_cancel_aut n pid_or_pinverse_left _ _ pid_or_pinverse_commute_left _, apply is_exact_at_t_transfer, apply is_exact_fiber_sequence end open prod succ_str fin /-------------- PART 3 --------------/ definition fibration_sequence [unfold 4] : fin 3 → Type* | (fin.mk 0 H) := Y | (fin.mk 1 H) := X | (fin.mk 2 H) := pfiber f | (fin.mk (n+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition loop_spaces2 [reducible] : +3ℕ → Type* | (n, m) := Ω[n] (fibration_sequence m) definition loop_spaces2_add1 (n : ℕ) : Π(x : fin 3), loop_spaces2 (n+1, x) = Ω (loop_spaces2 (n, x)) | (fin.mk 0 H) := by reflexivity | (fin.mk 1 H) := by reflexivity | (fin.mk 2 H) := by reflexivity | (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition loop_spaces_fun2 : Π(n : +3ℕ), loop_spaces2 (S n) →* loop_spaces2 n | (n, fin.mk 0 H) := proof Ω→[n] f qed | (n, fin.mk 1 H) := proof Ω→[n] (ppoint f) qed | (n, fin.mk 2 H) := proof Ω→[n] boundary_map ∘* loopn_succ_in Y n qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition loop_spaces_fun2_add1_0 (n : ℕ) (H : 0 < succ 2) : loop_spaces_fun2 (n+1, fin.mk 0 H) ~* cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 0 H)) := by reflexivity definition loop_spaces_fun2_add1_1 (n : ℕ) (H : 1 < succ 2) : loop_spaces_fun2 (n+1, fin.mk 1 H) ~* cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 1 H)) := by reflexivity definition loop_spaces_fun2_add1_2 (n : ℕ) (H : 2 < succ 2) : loop_spaces_fun2 (n+1, fin.mk 2 H) ~* cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 2 H)) := proof !ap1_pcompose⁻¹* qed definition nat_of_str [unfold 2] [reducible] {n : ℕ} : ℕ × fin (succ n) → ℕ := λx, succ n * pr1 x + val (pr2 x) definition str_of_nat {n : ℕ} : ℕ → ℕ × fin (succ n) := λm, (m / (succ n), mk_mod n m) definition nat_of_str_3S [unfold 2] [reducible] : Π(x : stratified +ℕ 2), nat_of_str x + 1 = nat_of_str (@S (stratified +ℕ 2) x) | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := by reflexivity | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition fin_prod_nat_equiv_nat [constructor] (n : ℕ) : ℕ × fin (succ n) ≃ ℕ := equiv.MK nat_of_str str_of_nat abstract begin intro m, unfold [nat_of_str, str_of_nat, mk_mod], refine _ ⬝ (eq_div_mul_add_mod m (succ n))⁻¹, rewrite [mul.comm] end end abstract begin intro x, cases x with m k, cases k with k H, apply prod_eq: esimp [str_of_nat], { rewrite [add.comm, add_mul_div_self_left _ _ (!zero_lt_succ), ▸*, div_eq_zero_of_lt H, zero_add]}, { apply eq_of_veq, esimp [mk_mod], rewrite [add.comm, add_mul_mod_self_left, ▸*, mod_eq_of_lt H]} end end /- note: in the following theorem the (n+1) case is 3 times the same, so maybe this can be simplified -/ definition loop_spaces2_pequiv' : Π(n : ℕ) (x : fin (nat.succ 2)), loop_spaces (nat_of_str (n, x)) ≃* loop_spaces2 (n, x) | 0 (fin.mk 0 H) := by reflexivity | 0 (fin.mk 1 H) := by reflexivity | 0 (fin.mk 2 H) := by reflexivity | (n+1) (fin.mk 0 H) := begin apply loop_pequiv_loop, rexact loop_spaces2_pequiv' n (fin.mk 0 H) end | (n+1) (fin.mk 1 H) := begin apply loop_pequiv_loop, rexact loop_spaces2_pequiv' n (fin.mk 1 H) end | (n+1) (fin.mk 2 H) := begin apply loop_pequiv_loop, rexact loop_spaces2_pequiv' n (fin.mk 2 H) end | n (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition loop_spaces2_pequiv : Π(x : +3ℕ), loop_spaces (nat_of_str x) ≃* loop_spaces2 x | (n, x) := loop_spaces2_pequiv' n x local attribute loop_pequiv_loop [reducible] /- all cases where n>0 are basically the same -/ definition loop_spaces_fun2_phomotopy (x : +3ℕ) : loop_spaces2_pequiv x ∘* loop_spaces_fun (nat_of_str x) ~* (loop_spaces_fun2 x ∘* loop_spaces2_pequiv (S x)) ∘* pcast (ap (loop_spaces) (nat_of_str_3S x)) := begin cases x with n x, cases x with k H, do 3 (cases k with k; rotate 1), { /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left}, { /-k=0-/ induction n with n IH, { refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹* ⬝* !pcompose_pid⁻¹*, reflexivity}, { refine _ ⬝* !pcompose_pid⁻¹*, refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_0⁻¹*, refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy, exact IH ⬝* !pcompose_pid}}, { /-k=1-/ induction n with n IH, { refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹* ⬝* !pcompose_pid⁻¹*, reflexivity}, { refine _ ⬝* !pcompose_pid⁻¹*, refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_1⁻¹*, refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy, exact IH ⬝* !pcompose_pid}}, { /-k=2-/ induction n with n IH, { refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹*, refine !pcompose_pid⁻¹* ⬝* pconcat2 _ _, { exact (pcompose_pid (chain_complex.boundary_map f))⁻¹*}, { refine !loop_pequiv_loop_rfl⁻¹* }}, { refine _ ⬝* !pcompose_pid⁻¹*, refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_2⁻¹*, refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy, exact IH ⬝* !pcompose_pid}}, end definition LES_of_loop_spaces2 [constructor] : type_chain_complex +3ℕ := transfer_type_chain_complex2 LES_of_loop_spaces !fin_prod_nat_equiv_nat nat_of_str_3S @loop_spaces_fun2 @loop_spaces2_pequiv begin intro m x, refine loop_spaces_fun2_phomotopy m x ⬝ _, apply ap (loop_spaces_fun2 m), apply ap (loop_spaces2_pequiv (S m)), esimp, exact ap010 cast !ap_compose⁻¹ x end definition is_exact_LES_of_loop_spaces2 : is_exact_t LES_of_loop_spaces2 := begin intro n, apply is_exact_at_t_transfer2, apply is_exact_LES_of_loop_spaces end definition LES_of_homotopy_groups' [constructor] : chain_complex +3ℕ := trunc_chain_complex LES_of_loop_spaces2 /-------------- PART 4 --------------/ open prod.ops definition homotopy_groups [reducible] : +3ℕ → Set* := λnm, π[nm.1] (fibration_sequence nm.2) definition homotopy_groups_pequiv_loop_spaces2 [reducible] : Π(n : +3ℕ), ptrunc 0 (loop_spaces2 n) ≃* homotopy_groups n | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := by reflexivity | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups_fun : Π(n : +3ℕ), homotopy_groups (S n) →* homotopy_groups n | (n, fin.mk 0 H) := proof π→[n] f qed | (n, fin.mk 1 H) := proof π→[n] (ppoint f) qed | (n, fin.mk 2 H) := proof π→[n] boundary_map ∘* homotopy_group_succ_in Y n qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups_fun_phomotopy_loop_spaces_fun2 [reducible] : Π(n : +3ℕ), homotopy_groups_pequiv_loop_spaces2 n ∘* ptrunc_functor 0 (loop_spaces_fun2 n) ~* homotopy_groups_fun n ∘* homotopy_groups_pequiv_loop_spaces2 (S n) | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := begin refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹*, refine !ptrunc_functor_pcompose end | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition LES_of_homotopy_groups [constructor] : chain_complex +3ℕ := transfer_chain_complex LES_of_homotopy_groups' homotopy_groups_fun homotopy_groups_pequiv_loop_spaces2 homotopy_groups_fun_phomotopy_loop_spaces_fun2 definition is_exact_LES_of_homotopy_groups : is_exact LES_of_homotopy_groups := begin intro n, apply is_exact_at_transfer, apply is_exact_at_trunc, apply is_exact_LES_of_loop_spaces2 end variable (n : ℕ) /- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/ example : LES_of_homotopy_groups (str_of_nat 6) = π[2] Y :> Set* := by reflexivity example : LES_of_homotopy_groups (str_of_nat 7) = π[2] X :> Set* := by reflexivity example : LES_of_homotopy_groups (str_of_nat 8) = π[2] (pfiber f) :> Set* := by reflexivity example : LES_of_homotopy_groups (str_of_nat 9) = π[3] Y :> Set* := by reflexivity example : LES_of_homotopy_groups (str_of_nat 10) = π[3] X :> Set* := by reflexivity example : LES_of_homotopy_groups (str_of_nat 11) = π[3] (pfiber f) :> Set* := by reflexivity definition LES_of_homotopy_groups_0 : LES_of_homotopy_groups (n, 0) = π[n] Y := by reflexivity definition LES_of_homotopy_groups_1 : LES_of_homotopy_groups (n, 1) = π[n] X := by reflexivity definition LES_of_homotopy_groups_2 : LES_of_homotopy_groups (n, 2) = π[n] (pfiber f) := by reflexivity /- the functions of the fiber sequence is definitionally what we want (as pointed function). -/ definition LES_of_homotopy_groups_fun_0 : cc_to_fn LES_of_homotopy_groups (n, 0) = π→[n] f := by reflexivity definition LES_of_homotopy_groups_fun_1 : cc_to_fn LES_of_homotopy_groups (n, 1) = π→[n] (ppoint f) := by reflexivity definition LES_of_homotopy_groups_fun_2 : cc_to_fn LES_of_homotopy_groups (n, 2) = π→[n] boundary_map ∘* homotopy_group_succ_in Y n := by reflexivity open group definition group_LES_of_homotopy_groups (n : ℕ) [is_succ n] (x : fin (succ 2)) : group (LES_of_homotopy_groups (n, x)) := group_homotopy_group n (fibration_sequence x) definition pgroup_LES_of_homotopy_groups (n : ℕ) [H : is_succ n] (x : fin (succ 2)) : pgroup (LES_of_homotopy_groups (n, x)) := by induction H with n; exact @pgroup_of_group _ (group_LES_of_homotopy_groups (n+1) x) idp definition ab_group_LES_of_homotopy_groups (n : ℕ) [is_at_least_two n] (x : fin (succ 2)) : ab_group (LES_of_homotopy_groups (n, x)) := ab_group_homotopy_group n (fibration_sequence x) definition Group_LES_of_homotopy_groups (n : +3ℕ) : Group.{u} := πg[n.1+1] (fibration_sequence n.2) definition AbGroup_LES_of_homotopy_groups (n : +3ℕ) : AbGroup.{u} := πag[n.1+2] (fibration_sequence n.2) definition homomorphism_LES_of_homotopy_groups_fun : Π(k : +3ℕ), Group_LES_of_homotopy_groups (S k) →g Group_LES_of_homotopy_groups k | (k, fin.mk 0 H) := proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 0)) (homotopy_group_functor_mul _ _) qed | (k, fin.mk 1 H) := proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 1)) (homotopy_group_functor_mul _ _) qed | (k, fin.mk 2 H) := begin apply homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 2)), exact abstract begin rewrite [LES_of_homotopy_groups_fun_2], refine homomorphism.struct ((π→g[k+1] boundary_map) ∘g ghomotopy_group_succ_in Y k), end end end | (k, fin.mk (l+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition LES_is_equiv_of_trivial (n : ℕ) (x : fin (succ 2)) [H : is_succ n] (HX1 : is_contr (LES_of_homotopy_groups (stratified_pred snat' (n, x)))) (HX2 : is_contr (LES_of_homotopy_groups (stratified_pred snat' (n+1, x)))) : is_equiv (cc_to_fn LES_of_homotopy_groups (n, x)) := begin induction H with n, induction x with m H, cases m with m, { rexact @is_equiv_of_trivial +3ℕ LES_of_homotopy_groups (n, 2) (is_exact_LES_of_homotopy_groups (n, 2)) proof (is_exact_LES_of_homotopy_groups (n+1, 0)) qed HX1 proof HX2 qed proof pgroup_LES_of_homotopy_groups (n+1) 0 qed proof pgroup_LES_of_homotopy_groups (n+1) 1 qed proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (n, 0)) qed }, cases m with m, { rexact @is_equiv_of_trivial +3ℕ LES_of_homotopy_groups (n+1, 0) (is_exact_LES_of_homotopy_groups (n+1, 0)) proof (is_exact_LES_of_homotopy_groups (n+1, 1)) qed HX1 proof HX2 qed proof pgroup_LES_of_homotopy_groups (n+1) 1 qed proof pgroup_LES_of_homotopy_groups (n+1) 2 qed proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (n, 1)) qed }, cases m with m, { rexact @is_equiv_of_trivial +3ℕ LES_of_homotopy_groups (n+1, 1) (is_exact_LES_of_homotopy_groups (n+1, 1)) proof (is_exact_LES_of_homotopy_groups (n+1, 2)) qed HX1 proof HX2 qed proof pgroup_LES_of_homotopy_groups (n+1) 2 qed proof pgroup_LES_of_homotopy_groups (n+2) 0 qed proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (n, 2)) qed }, exfalso, apply lt_le_antisymm H, apply le_add_left end definition LES_isomorphism_of_trivial_cod (n : ℕ) [H : is_succ n] (HX1 : is_contr (πg[n] Y)) (HX2 : is_contr (πg[n+1] Y)) : πg[n] (pfiber f) ≃g πg[n] X := begin induction H with n, refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 1)) _, apply LES_is_equiv_of_trivial, apply HX1, apply HX2 end definition LES_isomorphism_of_trivial_dom (n : ℕ) [H : is_succ n] (HX1 : is_contr (πg[n] X)) (HX2 : is_contr (πg[n+1] X)) : πg[n+1] Y ≃g πg[n] (pfiber f) := begin induction H with n, refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 2)) _, apply LES_is_equiv_of_trivial, apply HX1, apply HX2 end definition LES_isomorphism_of_trivial_pfiber (n : ℕ) (HX1 : is_contr (π[n] (pfiber f))) (HX2 : is_contr (πg[n+1] (pfiber f))) : πg[n+1] X ≃g πg[n+1] Y := begin refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 0)) _, apply LES_is_equiv_of_trivial, apply HX1, apply HX2 end end /- Fibration sequences This is a similar construction, but with as input data two pointed maps, and a pointed equivalence between the domain of the second map and the fiber of the first map, and a pointed homotopy. -/ section universe variable u parameters {F X Y : pType.{u}} (f : X →* Y) (g : F →* X) (e : pfiber f ≃* F) (p : ppoint f ~* g ∘* e) include f p open succ_str prod nat definition fibration_sequence_car [reducible] : +3ℕ → Type* | (n, fin.mk 0 H) := Ω[n] Y | (n, fin.mk 1 H) := Ω[n] X | (n, fin.mk k H) := Ω[n] F definition fibration_sequence_fun : Π(n : +3ℕ), fibration_sequence_car (S n) →* fibration_sequence_car n | (n, fin.mk 0 H) := proof Ω→[n] f qed | (n, fin.mk 1 H) := proof Ω→[n] g qed | (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* loopn_succ_in Y n qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition fibration_sequence_pequiv : Π(x : +3ℕ), loop_spaces2 f x ≃* fibration_sequence_car x | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := loopn_pequiv_loopn n e | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition fibration_sequence_fun_phomotopy : Π(x : +3ℕ), fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~* (fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x)) | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := begin refine !pid_pcompose ⬝* _, refine apn_phomotopy n p ⬝* _, refine !apn_pcompose ⬝* _, reflexivity end | (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !pcompose_pid⁻¹*, apply pwhisker_right, refine _ ⬝* !apn_pcompose⁻¹*, reflexivity end | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition type_LES_fibration_sequence [constructor] : type_chain_complex +3ℕ := transfer_type_chain_complex (LES_of_loop_spaces2 f) fibration_sequence_fun fibration_sequence_pequiv fibration_sequence_fun_phomotopy definition is_exact_type_fibration_sequence : is_exact_t type_LES_fibration_sequence := begin intro n, apply is_exact_at_t_transfer, apply is_exact_LES_of_loop_spaces2 end definition LES_fibration_sequence [constructor] : chain_complex +3ℕ := trunc_chain_complex type_LES_fibration_sequence end end chain_complex