/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of mapping cylinders -/ import hit.quotient types.fiber open quotient eq sum equiv fiber namespace cylinder section parameters {A B : Type} (f : A → B) local abbreviation C := B + A inductive cylinder_rel : C → C → Type := | Rmk : Π(a : A), cylinder_rel (inl (f a)) (inr a) open cylinder_rel local abbreviation R := cylinder_rel definition cylinder := quotient cylinder_rel -- TODO: define this in root namespace parameter {f} definition base (b : B) : cylinder := class_of R (inl b) definition top (a : A) : cylinder := class_of R (inr a) definition seg (a : A) : base (f a) = top a := eq_of_rel cylinder_rel (Rmk f a) protected definition rec {P : cylinder → Type} (Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a)) (Pseg : Π(a : A), Pbase (f a) =[seg a] Ptop a) (x : cylinder) : P x := begin induction x, { cases a, apply Pbase, apply Ptop}, { cases H, apply Pseg} end protected definition rec_on [reducible] {P : cylinder → Type} (x : cylinder) (Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a)) (Pseg : Π(a : A), Pbase (f a) =[seg a] Ptop a) : P x := rec Pbase Ptop Pseg x theorem rec_seg {P : cylinder → Type} (Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a)) (Pseg : Π(a : A), Pbase (f a) =[seg a] Ptop a) (a : A) : apd (rec Pbase Ptop Pseg) (seg a) = Pseg a := !rec_eq_of_rel protected definition elim {P : Type} (Pbase : B → P) (Ptop : A → P) (Pseg : Π(a : A), Pbase (f a) = Ptop a) (x : cylinder) : P := rec Pbase Ptop (λa, pathover_of_eq _ (Pseg a)) x protected definition elim_on [reducible] {P : Type} (x : cylinder) (Pbase : B → P) (Ptop : A → P) (Pseg : Π(a : A), Pbase (f a) = Ptop a) : P := elim Pbase Ptop Pseg x theorem elim_seg {P : Type} (Pbase : B → P) (Ptop : A → P) (Pseg : Π(a : A), Pbase (f a) = Ptop a) (a : A) : ap (elim Pbase Ptop Pseg) (seg a) = Pseg a := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (seg a)), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim,rec_seg], end protected definition elim_type (Pbase : B → Type) (Ptop : A → Type) (Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) (x : cylinder) : Type := elim Pbase Ptop (λa, ua (Pseg a)) x protected definition elim_type_on [reducible] (x : cylinder) (Pbase : B → Type) (Ptop : A → Type) (Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) : Type := elim_type Pbase Ptop Pseg x theorem elim_type_seg (Pbase : B → Type) (Ptop : A → Type) (Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) (a : A) : transport (elim_type Pbase Ptop Pseg) (seg a) = Pseg a := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_seg];apply cast_ua_fn end end cylinder attribute cylinder.base cylinder.top [constructor] attribute cylinder.rec cylinder.elim [unfold 8] [recursor 8] attribute cylinder.elim_type [unfold 7] attribute cylinder.rec_on cylinder.elim_on [unfold 5] attribute cylinder.elim_type_on [unfold 4] namespace cylinder open sigma sigma.ops variables {A B : Type} (f : A → B) /- cylinder as a dependent family -/ definition pr1 [unfold 4] : cylinder f → B := cylinder.elim id f (λa, idp) definition fcylinder : B → Type := fiber (pr1 f) definition cylinder_equiv_sigma_fcylinder [constructor] : cylinder f ≃ Σb, fcylinder f b := !sigma_fiber_equiv⁻¹ᵉ variable {f} definition fbase (b : B) : fcylinder f b := fiber.mk (base b) idp definition ftop (a : A) : fcylinder f (f a) := fiber.mk (top a) idp definition fseg (a : A) : fbase (f a) = ftop a := fiber_eq (seg a) !elim_seg⁻¹ -- TODO: define the induction principle for "fcylinder" -- set_option pp.notation false -- -- The induction principle for the dependent mapping cylinder (TODO) -- protected definition frec {P : Π(b), fcylinder f b → Type} -- (Pbase : Π(b : B), P _ (fbase b)) (Ptop : Π(a : A), P _ (ftop a)) -- (Pseg : Π(a : A), Pbase (f a) =[fseg a] Ptop a) {b : B} (x : fcylinder f b) : P _ x := -- begin -- cases x with x p, induction p, -- induction x: esimp, -- { apply Pbase}, -- { apply Ptop}, -- { esimp, --fapply fiber_pathover, -- --refine pathover_of_pathover_ap P (λx, fiber.mk x idp), -- exact sorry} -- end -- theorem frec_fseg {P : Π(b), fcylinder f b → Type} -- (Pbase : Π(b : B), P _ (fbase b)) (Ptop : Π(a : A), P _ (ftop a)) -- (Pseg : Π(a : A), Pbase (f a) =[fseg a] Ptop a) (a : A) -- : apd (cylinder.frec Pbase Ptop Pseg) (fseg a) = Pseg a := -- sorry end cylinder