/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import hit.pushout hit.prop_trunc algebra.category.constructions.pushout algebra.category.constructions.fundamental_groupoid algebra.category.functor.equivalence open eq pushout category functor sum iso paths set_quotient is_trunc trunc pi quotient is_equiv fiber equiv function namespace pushout section universe variables u v w parameters {S TL : Type.{u}} -- do we want to put these in different universe levels? {BL : Type.{v}} {TR : Type.{w}} (k : S → TL) (f : TL → BL) (g : TL → TR) [ksurj : is_surjective k] definition pushout_of_sum [unfold 6] (x : BL + TR) : pushout f g := quotient.class_of _ x include ksurj local notation `F` := Π₁⇒ f local notation `G` := Π₁⇒ g local notation `C` := Groupoid_bpushout k F G local notation `R` := bpushout_prehom_index k F G local notation `Q` := bpushout_hom_rel_index k F G local attribute is_trunc_equiv [instance] open category.bpushout_prehom_index category.bpushout_hom_rel_index paths.paths_rel protected definition code_equiv_pt (x : BL + TR) {y : TL} {s : S} (p : k s = y) : @hom C _ x (sum.inl (f y)) ≃ @hom C _ x (sum.inr (g y)) := begin fapply equiv_postcompose, { apply class_of, refine [iE k F G (tap g (tr p)), DE k F G s, iD k F G (tap f (tr p⁻¹))]}, refine all_iso _ end protected definition code_equiv_pt_constant (x : BL + TR) {y : TL} {s s' : S} (p : k s = y) (p' : k s' = y) : code_equiv_pt x p = code_equiv_pt x p' := begin apply equiv_eq, intro g, apply ap (λx, x ∘ _), induction p', refine eq_of_rel (tr _) ⬝ (eq_of_rel (tr _))⁻¹, { exact [DE k _ _ s']}, { refine rtrans (rel [_] (cohDE F G (tr p))) _, refine rtrans (rcons _ (rel [] !DD)) _, refine tr_rev (λx, paths_rel _ [_ , iD k F G (tr x)] _) (!ap_con⁻¹ ⬝ ap02 f !con.left_inv) _, exact rcons _ (rel [] !idD)}, refine rtrans (rel _ !idE) _, exact rcons _ (rel [] !idD) end protected definition code_equiv (x : BL + TR) (y : TL) : @hom C _ x (sum.inl (f y)) ≃ @hom C _ x (sum.inr (g y)) := begin refine @prop_trunc.elim_set _ _ _ _ _ (ksurj y), { apply @is_trunc_equiv: apply is_set_hom}, { intro v, cases v with s p, exact code_equiv_pt x p}, intro v v', cases v with s p, cases v' with s' p', exact code_equiv_pt_constant x p p' end theorem code_equiv_eq (x : BL + TR) (s : S) : code_equiv x (k s) = @(equiv_postcompose (class_of [DE k F G s])) !all_iso := begin apply equiv_eq, intro h, -- induction h using set_quotient.rec_prop with l, refine @set_quotient.rec_prop _ _ _ _ _ h, {intro l, apply is_trunc_eq, apply is_set_hom}, intro l, have ksurj (k s) = tr (fiber.mk s idp), from !is_prop.elim, refine ap (λz, to_fun (@prop_trunc.elim_set _ _ _ _ _ z) (class_of l)) this ⬝ _, change class_of ([iE k F G (tr idp), DE k F G s, iD k F G (tr idp)] ++ l) = class_of (DE k F G s :: l) :> @hom C _ _ _, refine eq_of_rel (tr _) ⬝ (eq_of_rel (tr _)), { exact DE k F G s :: iD k F G (tr idp) :: l}, { change paths_rel Q ([iE k F G (tr idp)] ++ (DE k F G s :: iD k F G (tr idp) :: l)) (nil ++ (DE k F G s :: iD k F G (tr idp) :: l)), apply rel ([DE k F G s, iD k F G (tr idp)] ++ l), apply idE}, { apply rcons, rewrite [-nil_append l at {2}, -singleton_append], apply rel l, apply idD} end theorem to_fun_code_equiv (x : BL + TR) (s : S) (h : @hom C _ x (sum.inl (f (k s)))) : (to_fun (code_equiv x (k s)) h) = @comp C _ _ _ _ (class_of [DE k F G s]) h := ap010 to_fun !code_equiv_eq h protected definition code [unfold 10] (x : BL + TR) (y : pushout f g) : Type.{max u v w} := begin refine quotient.elim_type _ _ y, { clear y, intro y, exact @hom C _ x y}, clear y, intro y z r, induction r with y, exact code_equiv x y end /- [iE (ap g p), DE s, iD (ap f p⁻¹)] --> [DE s', iD (ap f p), iD (ap f p⁻¹)] --> [DE s', iD (ap f p ∘ ap f p⁻¹)] --> [DE s'] <-- [iE 1, DE s', iD 1] -/ definition is_set_code (x : BL + TR) (y : pushout f g) : is_set (code x y) := begin induction y using pushout.rec_prop, apply is_set_hom, apply is_set_hom, end local attribute is_set_code [instance] -- encode is easy definition encode {x : BL + TR} {y : pushout f g} (p : trunc 0 (pushout_of_sum x = y)) : code x y := begin induction p with p, exact transport (code x) p id end -- decode is harder definition decode_reduction_rule [unfold 11] ⦃x x' : BL + TR⦄ (i : R x x') : trunc 0 (pushout_of_sum x = pushout_of_sum x') := begin induction i, { exact tap inl f_1}, { exact tap inr g_1}, { exact tr (glue (k s))}, { exact tr (glue (k s))⁻¹}, end definition decode_list ⦃x x' : BL + TR⦄ (l : paths R x x') : trunc 0 (pushout_of_sum x = pushout_of_sum x') := realize (λa a', trunc 0 (pushout_of_sum a = pushout_of_sum a')) decode_reduction_rule (λa, tidp) (λa₁ a₂ a₃, tconcat) l definition decode_list_nil (x : BL + TR) : decode_list (@nil _ _ x) = tidp := idp definition decode_list_cons ⦃x₁ x₂ x₃ : BL + TR⦄ (r : R x₂ x₃) (l : paths R x₁ x₂) : decode_list (r :: l) = tconcat (decode_list l) (decode_reduction_rule r) := idp definition decode_list_singleton ⦃x₁ x₂ : BL + TR⦄ (r : R x₁ x₂) : decode_list [r] = decode_reduction_rule r := realize_singleton (λa b p, tidp_tcon p) r definition decode_list_pair ⦃x₁ x₂ x₃ : BL + TR⦄ (r₂ : R x₂ x₃) (r₁ : R x₁ x₂) : decode_list [r₂, r₁] = tconcat (decode_reduction_rule r₁) (decode_reduction_rule r₂) := realize_pair (λa b p, tidp_tcon p) r₂ r₁ definition decode_list_append ⦃x₁ x₂ x₃ : BL + TR⦄ (l₂ : paths R x₂ x₃) (l₁ : paths R x₁ x₂) : decode_list (l₂ ++ l₁) = tconcat (decode_list l₁) (decode_list l₂) := realize_append (λa b c d, tassoc) (λa b, tcon_tidp) l₂ l₁ theorem decode_list_rel ⦃x x' : BL + TR⦄ {l l' : paths R x x'} (H : Q l l') : decode_list l = decode_list l' := begin induction H, { rewrite [decode_list_pair, decode_list_singleton], exact !tap_tcon⁻¹}, { rewrite [decode_list_pair, decode_list_singleton], exact !tap_tcon⁻¹}, { rewrite [decode_list_pair, decode_list_nil], exact ap tr !con.right_inv}, { rewrite [decode_list_pair, decode_list_nil], exact ap tr !con.left_inv}, { apply decode_list_singleton}, { apply decode_list_singleton}, { rewrite [+decode_list_pair], induction h with p, apply ap tr, rewrite [-+ap_compose'], exact !ap_con_eq_con_ap⁻¹}, { rewrite [+decode_list_pair], induction h with p, apply ap tr, rewrite [-+ap_compose'], apply ap_con_eq_con_ap} end definition decode_point [unfold 11] {x x' : BL + TR} (c : @hom C _ x x') : trunc 0 (pushout_of_sum x = pushout_of_sum x') := begin induction c with l, { exact decode_list l}, { induction H with H, refine realize_eq _ _ _ H, { intros, apply tassoc}, { intros, apply tcon_tidp}, { clear H a a', intros, exact decode_list_rel a}} end theorem decode_coh (x : BL + TR) (y : TL) (p : trunc 0 (pushout_of_sum x = inl (f y))) : p =[glue y] tconcat p (tr (glue y)) := begin induction p with p, apply trunc_pathover, apply eq_pathover_constant_left_id_right, apply square_of_eq, exact !idp_con⁻¹ end definition decode [unfold 7] {x : BL + TR} {y : pushout f g} (c : code x y) : trunc 0 (pushout_of_sum x = y) := begin induction y using quotient.rec with y, { exact decode_point c}, { induction H with y, apply arrow_pathover_left, intro c, revert c, apply @set_quotient.rec_prop, { intro z, apply is_trunc_pathover}, intro l, refine _ ⬝op ap decode_point !quotient.elim_type_eq_of_rel⁻¹, change pathover (λ a, trunc 0 (eq (pushout_of_sum x) a)) (decode_list l) (eq_of_rel (pushout_rel f g) (pushout_rel.Rmk f g y)) (decode_point (code_equiv x y (class_of l))), note z := ksurj y, revert z, apply @image.rec, { intro, apply is_trunc_pathover}, intro s p, induction p, rewrite to_fun_code_equiv, refine _ ⬝op (decode_list_cons (DE k F G s) l)⁻¹, esimp, generalize decode_list l, apply @trunc.rec, { intro p, apply is_trunc_pathover}, intro p, apply trunc_pathover, apply eq_pathover_constant_left_id_right, apply square_of_eq, exact !idp_con⁻¹} end -- report the failing of esimp in the commented-out proof below -- definition decode [unfold 7] {x : BL + TR} {y : pushout f g} (c : code x y) : -- trunc 0 (pushout_of_sum x = y) := -- begin -- induction y using quotient.rec with y, -- { exact decode_point c}, -- { induction H with y, apply arrow_pathover_left, intro c, -- revert c, apply @set_quotient.rec_prop, { intro z, apply is_trunc_pathover}, -- intro l, -- refine _ ⬝op ap decode_point !quotient.elim_type_eq_of_rel⁻¹, -- --esimp, -- change pathover (λ (a : pushout f g), trunc 0 (eq (pushout_of_sum x) a)) -- (decode_point (class_of l)) -- (glue y) -- (decode_point (class_of ((pushout_prehom_index.lr F G id) :: l))), -- esimp, rewrite [▸*, decode_list_cons, ▸*], generalize (decode_list l), clear l, -- apply @trunc.rec, { intro z, apply is_trunc_pathover}, -- intro p, apply trunc_pathover, apply eq_pathover_constant_left_id_right, -- apply square_of_eq, exact !idp_con⁻¹} -- end -- decode-encode is easy protected theorem decode_encode {x : BL + TR} {y : pushout f g} (p : trunc 0 (pushout_of_sum x = y)) : decode (encode p) = p := begin induction p with p, induction p, reflexivity end definition is_surjective.rec {A B : Type} {f : A → B} (Hf : is_surjective f) {P : B → Type} [Πb, is_prop (P b)] (H : Πa, P (f a)) (b : B) : P b := by induction Hf b; exact p ▸ H a -- encode-decode is harder definition code_comp [unfold 8] {x y : BL + TR} {z : pushout f g} (c : code x (pushout_of_sum y)) (d : code y z) : code x z := begin induction z using quotient.rec with z, { exact d ∘ c}, { induction H with z, apply arrow_pathover_left, intro d, refine !pathover_tr ⬝op _, refine !elim_type_eq_of_rel ⬝ _ ⬝ ap _ !elim_type_eq_of_rel⁻¹, note q := ksurj z, revert q, apply @image.rec, { intro, apply is_trunc_eq, apply is_set_code}, intro s p, induction p, refine !to_fun_code_equiv ⬝ _ ⬝ ap (λh, h ∘ c) !to_fun_code_equiv⁻¹, apply assoc} end theorem encode_tcon' {x y : BL + TR} {z : pushout f g} (p : trunc 0 (pushout_of_sum x = pushout_of_sum y)) (q : trunc 0 (pushout_of_sum y = z)): encode (tconcat p q) = code_comp (encode p) (encode q) := begin induction q with q, induction q, refine ap encode !tcon_tidp ⬝ _, symmetry, apply id_left end theorem encode_tcon {x y z : BL + TR} (p : trunc 0 (pushout_of_sum x = pushout_of_sum y)) (q : trunc 0 (pushout_of_sum y = pushout_of_sum z)): encode (tconcat p q) = encode q ∘ encode p := encode_tcon' p q open category.bpushout_hom_rel_index theorem encode_decode_singleton {x y : BL + TR} (r : R x y) : encode (decode_reduction_rule r) = class_of [r] := begin have is_prop (encode (decode_reduction_rule r) = class_of [r]), from !is_trunc_eq, induction r, { induction f_1 with p, induction p, symmetry, apply eq_of_rel, apply tr, apply paths_rel_of_Q, apply idD}, { induction g_1 with p, induction p, symmetry, apply eq_of_rel, apply tr, apply paths_rel_of_Q, apply idE}, { refine !elim_type_eq_of_rel ⬝ _, apply to_fun_code_equiv}, { refine !elim_type_eq_of_rel_inv' ⬝ _, apply ap010 to_inv !code_equiv_eq} end local attribute pushout [reducible] protected theorem encode_decode {x : BL + TR} {y : pushout f g} (c : code x y) : encode (decode c) = c := begin induction y using quotient.rec_prop with y, revert c, apply @set_quotient.rec_prop, { intro, apply is_trunc_eq}, intro l, change encode (decode_list l) = class_of l, induction l, { reflexivity}, { rewrite [decode_list_cons, encode_tcon, encode_decode_singleton, v_0]} end definition pushout_teq_equiv [constructor] (x : BL + TR) (y : pushout f g) : trunc 0 (pushout_of_sum x = y) ≃ code x y := equiv.MK encode decode encode_decode decode_encode definition vankampen [constructor] (x y : BL + TR) : trunc 0 (pushout_of_sum x = pushout_of_sum y) ≃ @hom C _ x y := pushout_teq_equiv x (pushout_of_sum y) --Groupoid_pushout k F G definition decode_point_comp [unfold 8] {x₁ x₂ x₃ : BL + TR} (c₂ : @hom C _ x₂ x₃) (c₁ : @hom C _ x₁ x₂) : decode_point (c₂ ∘ c₁) = tconcat (decode_point c₁) (decode_point c₂) := begin induction c₂ using set_quotient.rec_prop with l₂, induction c₁ using set_quotient.rec_prop with l₁, apply decode_list_append end definition vankampen_functor [constructor] : C ⇒ Π₁ (pushout f g) := begin fconstructor, { exact pushout_of_sum}, { intro x y c, exact decode_point c}, { intro x, reflexivity}, { intro x y z d c, apply decode_point_comp} end definition fully_faithful_vankampen_functor : fully_faithful vankampen_functor := begin intro x x', fapply adjointify, { apply encode}, { intro p, apply decode_encode}, { intro c, apply encode_decode} end definition essentially_surjective_vankampen_functor : essentially_surjective vankampen_functor := begin intro z, induction z using quotient.rec_prop with x, apply exists.intro x, reflexivity end definition is_weak_equivalence_vankampen_functor [constructor] : is_weak_equivalence vankampen_functor := begin constructor, { exact fully_faithful_vankampen_functor}, { exact essentially_surjective_vankampen_functor} end definition fundamental_groupoid_bpushout [constructor] : Groupoid_bpushout k (Π₁⇒ f) (Π₁⇒ g) ≃w Π₁ (pushout f g) := weak_equivalence.mk vankampen_functor is_weak_equivalence_vankampen_functor end definition fundamental_groupoid_pushout [constructor] {TL BL TR : Type} (f : TL → BL) (g : TL → TR) : Groupoid_bpushout (@id TL) (Π₁⇒ f) (Π₁⇒ g) ≃w Π₁ (pushout f g) := fundamental_groupoid_bpushout (@id TL) f g end pushout