-- Copyright (c) 2014 Jeremy Avigad. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad, Leonardo de Moura -- algebra.group -- ============= -- Various structures with 1, *, inv, including groups. import logic.eq logic.connectives import data.unit data.sigma data.prod import algebra.function algebra.binary open eq namespace algebra -- classes for notation -- -------------------- inductive has_mul [class] (A : Type) : Type := mk : (A → A → A) → has_mul A inductive has_one [class] (A : Type) : Type := mk : A → has_one A inductive has_inv [class] (A : Type) : Type := mk : (A → A) → has_inv A definition mul {A : Type} {s : has_mul A} (a b : A) : A := has_mul.rec (λf, f) s a b definition one {A : Type} {s : has_one A} : A := has_one.rec (λo, o) s definition inv {A : Type} {s : has_inv A} (a : A) : A := has_inv.rec (λi, i) s a infix `*` := mul postfix `⁻¹` := inv notation 1 := one -- semigroup -- --------- inductive semigroup [class] (A : Type) : Type := mk : Π mul: A → A → A, (∀a b c : A, (mul (mul a b) c = mul a (mul b c))) → semigroup A namespace semigroup section variables {A : Type} {s : semigroup A} variables a b c : A definition mul := semigroup.rec (λmul assoc, mul) s a b context infixl `*` := mul definition assoc : (a * b) * c = a * (b * c) := semigroup.rec (λmul assoc, assoc) s a b c end end end semigroup section variables {A : Type} {s : semigroup A} include s definition semigroup_has_mul [instance] : has_mul A := has_mul.mk semigroup.mul theorem mul_assoc (a b c : A) : a * b * c = a * (b * c) := !semigroup.assoc end -- comm_semigroup -- -------------- inductive comm_semigroup [class] (A : Type) : Type := mk : Π (mul: A → A → A) (infixl `*` := mul), (∀a b c, (a * b) * c = a * (b * c)) → (∀a b, a * b = b * a) → comm_semigroup A namespace comm_semigroup section variables {A : Type} {s : comm_semigroup A} variables a b c : A definition mul (a b : A) : A := comm_semigroup.rec (λmul assoc comm, mul) s a b definition assoc : mul (mul a b) c = mul a (mul b c) := comm_semigroup.rec (λmul assoc comm, assoc) s a b c definition comm : mul a b = mul b a := comm_semigroup.rec (λmul assoc comm, comm) s a b end end comm_semigroup section variables {A : Type} {s : comm_semigroup A} variables a b c : A include s definition comm_semigroup_semigroup [instance] : semigroup A := semigroup.mk comm_semigroup.mul comm_semigroup.assoc theorem mul_comm : a * b = b * a := !comm_semigroup.comm theorem mul_left_comm : a * (b * c) = b * (a * c) := binary.left_comm mul_comm mul_assoc a b c end -- monoid -- ------ inductive monoid [class] (A : Type) : Type := mk : Π (mul: A → A → A) (one : A) (infixl `*` := mul) (notation 1 := one), (∀a b c, (a * b) * c = a * (b * c)) → (∀a, a * 1 = a) → (∀a, 1 * a = a) → monoid A namespace monoid section variables {A : Type} {s : monoid A} variables a b c : A include s context definition mul := monoid.rec (λmul one assoc right_id left_id, mul) s a b definition one := monoid.rec (λmul one assoc right_id left_id, one) s infixl `*` := mul notation 1 := one definition assoc : (a * b) * c = a * (b * c) := monoid.rec (λmul one assoc right_id left_id, assoc) s a b c definition right_id : a * 1 = a := monoid.rec (λmul one assoc right_id left_id, right_id) s a definition left_id : 1 * a = a := monoid.rec (λmul one assoc right_id left_id, left_id) s a end end end monoid section variables {A : Type} {s : monoid A} variable a : A include s definition monoid_has_one [instance] : has_one A := has_one.mk (monoid.one) definition monoid_semigroup [instance] : semigroup A := semigroup.mk monoid.mul monoid.assoc theorem mul_right_id : a * 1 = a := !monoid.right_id theorem mul_left_id : 1 * a = a := !monoid.left_id end -- comm_monoid -- ----------- inductive comm_monoid [class] (A : Type) : Type := mk : Π (mul: A → A → A) (one : A) (infixl `*` := mul) (notation 1 := one), (∀a b c, (a * b) * c = a * (b * c)) → (∀a, a * 1 = a) → (∀a, 1 * a = a) → (∀a b, a * b = b * a) → comm_monoid A namespace comm_monoid section variables {A : Type} {s : comm_monoid A} variables a b c : A definition mul := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b definition one := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s definition assoc : mul (mul a b) c = mul a (mul b c) := comm_monoid.rec (λmul one assoc right_id left_id comm, assoc) s a b c definition right_id : mul a one = a := comm_monoid.rec (λmul one assoc right_id left_id comm, right_id) s a definition left_id : mul one a = a := comm_monoid.rec (λmul one assoc right_id left_id comm, left_id) s a definition comm : mul a b = mul b a := comm_monoid.rec (λmul one assoc right_id left_id comm, comm) s a b end end comm_monoid section variables {A : Type} {s : comm_monoid A} include s definition comm_monoid_monoid [instance] : monoid A := monoid.mk comm_monoid.mul comm_monoid.one comm_monoid.assoc comm_monoid.right_id comm_monoid.left_id definition comm_monoid_comm_semigroup [instance] : comm_semigroup A := comm_semigroup.mk comm_monoid.mul comm_monoid.assoc comm_monoid.comm end -- bundled structures -- ------------------ inductive Semigroup [class] : Type := mk : Π carrier : Type, semigroup carrier → Semigroup section variable S : Semigroup definition Semigroup.carrier [coercion] : Type := Semigroup.rec (λc s, c) S definition Semigroup.struc [instance] : semigroup S := Semigroup.rec (λc s, s) S end inductive CommSemigroup [class] : Type := mk : Π carrier : Type, comm_semigroup carrier → CommSemigroup section variable S : CommSemigroup definition CommSemigroup.carrier [coercion] : Type := CommSemigroup.rec (λc s, c) S definition CommSemigroup.struc [instance] : comm_semigroup S := CommSemigroup.rec (λc s, s) S end inductive Monoid [class] : Type := mk : Π carrier : Type, monoid carrier → Monoid section variable S : Monoid definition Monoid.carrier [coercion] : Type := Monoid.rec (λc s, c) S definition Monoid.struc [instance] : monoid S := Monoid.rec (λc s, s) S end inductive CommMonoid : Type := mk : Π carrier : Type, comm_monoid carrier → CommMonoid section variable S : CommMonoid definition CommMonoid.carrier [coercion] : Type := CommMonoid.rec (λc s, c) S definition CommMonoid.struc [instance] : comm_monoid S := CommMonoid.rec (λc s, s) S end end algebra open algebra section examples theorem test1 {S : Semigroup} (a b c d : S) : a * (b * c) * d = a * b * (c * d) := calc a * (b * c) * d = a * b * c * d : {symm !mul_assoc} ... = a * b * (c * d) : !mul_assoc theorem test2 {M : CommSemigroup} (a b : M) : a * b = a * b := rfl theorem test3 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) := calc a * (b * c) * d = a * b * c * d : {symm !mul_assoc} ... = a * b * (c * d) : !mul_assoc -- for test4b to work, we need instances at the level of the bundled structures as well definition Monoid_Semigroup [instance] (M : Monoid) : Semigroup := Semigroup.mk (Monoid.carrier M) _ theorem test4 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) := test1 a b c d theorem test5 {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {!mul_right_id} ... = a * (b * c) : !mul_assoc theorem test5a {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {!mul_right_id} ... = a * (b * c) : !mul_assoc theorem test5b {A : Type} {M : monoid A} (a b c : A) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {!mul_right_id} ... = a * (b * c) : !mul_assoc theorem test6 {M : CommMonoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {!mul_right_id} ... = a * (b * c) : !mul_assoc end examples