universes l1 l2 l3 l4 l5 l6 constants (A : Type.{l1}) (B : A → Type.{l2}) (C : ∀ (a : A) (ba : B a), Type.{l3}) (D : ∀ (a : A) (ba : B a) (cba : C a ba), Type.{l4}) (E : ∀ (a : A) (ba : B a) (cba : C a ba) (dcba : D a ba cba), Type.{l5}) (F : ∀ (a : A) (ba : B a) (cba : C a ba) (dcba : D a ba cba) (edcba : E a ba cba dcba), Type.{l6}) (C_ss : ∀ a ba, subsingleton (C a ba)) (a1 a2 a3 : A) (mk_B1 mk_B2 : ∀ a, B a) (mk_C1 mk_C2 : ∀ {a} ba, C a ba) (tr_B : ∀ {a}, B a → B a) (x y z : A → A) (f f' : ∀ {a : A} {ba : B a} (cba : C a ba), D a ba cba) (g : ∀ {a : A} {ba : B a} {cba : C a ba} (dcba : D a ba cba), E a ba cba dcba) (h : ∀ {a : A} {ba : B a} {cba : C a ba} {dcba : D a ba cba} (edcba : E a ba cba dcba), F a ba cba dcba edcba) attribute C_ss [instance] set_option blast.strategy "cc" set_option blast.cc.heq true example : ∀ {a a' : A}, a == a' → mk_B1 a == mk_B1 a' := by blast example : ∀ {a a' : A}, a == a' → mk_B2 a == mk_B2 a' := by blast example : a1 == y a2 → mk_B1 a1 == mk_B1 (y a2) := by blast example : a1 == x a2 → a2 == y a1 → mk_B1 (x (y a1)) == mk_B1 (x (y (x a2))) := by blast -- The following one needs subsingleton support -- example : a1 == y a2 → mk_B1 a1 == mk_B2 (y a2) → f (mk_C1 (mk_B2 a1)) == f (mk_C2 (mk_B1 (y a2))) := -- by blast