/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include "exception.h" #include "normalizer.h" #include "builtin.h" #include "trace.h" #include "test.h" #include "expr_sets.h" #include "abstract.h" #include "kernel_exception.h" #include "import_all.h" #include "printer.h" using namespace lean; expr normalize(expr const & e) { environment env; return normalize(e, env); } static void eval(expr const & e, environment & env) { std::cout << e << " --> " << normalize(e, env) << "\n"; } static expr t() { return Const("t"); } static expr lam(expr const & e) { return mk_lambda("_", t(), e); } static expr lam(expr const & t, expr const & e) { return mk_lambda("_", t, e); } static expr v(unsigned i) { return Var(i); } static expr zero() { // fun (t : T) (s : t -> t) (z : t) z return lam(t(), lam(mk_arrow(v(0), v(0)), lam(v(1), v(0)))); } static expr one() { // fun (t : T) (s : t -> t) s return lam(t(), lam(mk_arrow(v(0), v(0)), v(0))); } static expr num() { return Const("num"); } static expr plus() { // fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A f (n A f x). expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4); expr body = m(A, f, n(A, f, x)); return lam(num(), lam(num(), lam(t(), lam(mk_arrow(v(0), v(0)), lam(v(1), body))))); } static expr two() { return mk_app({plus(), one(), one()}); } static expr three() { return mk_app({plus(), two(), one()}); } static expr four() { return mk_app({plus(), two(), two()}); } static expr times() { // fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A (n A f) x. expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4); expr body = m(A, n(A, f), x); return lam(num(), lam(num(), lam(t(), lam(mk_arrow(v(0), v(0)), lam(v(1), body))))); } static expr power() { // fun (m n : numeral) (A : Type 0) => m (A -> A) (n A). expr A = v(0), n = v(1), m = v(2); expr body = n(mk_arrow(A, A), m(A)); return lam(num(), lam(num(), lam(mk_arrow(v(0), v(0)), body))); } unsigned count_core(expr const & a, expr_set & s) { if (s.find(a) != s.end()) return 0; s.insert(a); switch (a.kind()) { case expr_kind::Var: case expr_kind::Constant: case expr_kind::Type: case expr_kind::Value: return 1; case expr_kind::App: return std::accumulate(begin_args(a), end_args(a), 1, [&](unsigned sum, expr const & arg){ return sum + count_core(arg, s); }); case expr_kind::Eq: return count_core(eq_lhs(a), s) + count_core(eq_rhs(a), s) + 1; case expr_kind::Lambda: case expr_kind::Pi: return count_core(abst_domain(a), s) + count_core(abst_body(a), s) + 1; case expr_kind::Let: return count_core(let_value(a), s) + count_core(let_body(a), s) + 1; } return 0; } unsigned count(expr const & a) { expr_set s; return count_core(a, s); } static void tst_church_numbers() { environment env; env.add_var("t", Type()); env.add_var("N", Type()); env.add_var("z", Const("N")); env.add_var("s", Const("N")); expr N = Const("N"); expr z = Const("z"); expr s = Const("s"); std::cout << normalize(mk_app(zero(), N, s, z), env) << "\n"; std::cout << normalize(mk_app(one(), N, s, z), env) << "\n"; std::cout << normalize(mk_app(two(), N, s, z), env) << "\n"; std::cout << normalize(mk_app(four(), N, s, z), env) << "\n"; std::cout << count(normalize(mk_app(four(), N, s, z), env)) << "\n"; lean_assert(count(normalize(mk_app(four(), N, s, z), env)) == 4 + 2); std::cout << normalize(mk_app(mk_app(times(), four(), four()), N, s, z), env) << "\n"; std::cout << normalize(mk_app(mk_app(power(), two(), four()), N, s, z), env) << "\n"; lean_assert(count(normalize(mk_app(mk_app(power(), two(), four()), N, s, z), env)) == 16 + 2); std::cout << normalize(mk_app(mk_app(times(), two(), mk_app(power(), two(), four())), N, s, z), env) << "\n"; std::cout << count(normalize(mk_app(mk_app(times(), two(), mk_app(power(), two(), four())), N, s, z), env)) << "\n"; std::cout << count(normalize(mk_app(mk_app(times(), four(), mk_app(power(), two(), four())), N, s, z), env)) << "\n"; lean_assert(count(normalize(mk_app(mk_app(times(), four(), mk_app(power(), two(), four())), N, s, z), env)) == 64 + 2); expr big = normalize(mk_app(mk_app(power(), two(), mk_app(power(), two(), three())), N, s, z), env); std::cout << count(big) << "\n"; lean_assert(count(big) == 256 + 2); expr three = mk_app(plus(), two(), one()); lean_assert(count(normalize(mk_app(mk_app(power(), three, three), N, s, z), env)) == 27 + 2); // expr big2 = normalize(mk_app(mk_app(power(), two(), mk_app(times(), mk_app(plus(), four(), one()), four())), N, s, z), env); // std::cout << count(big2) << "\n"; std::cout << normalize(lam(lam(mk_app(mk_app(times(), four(), four()), N, Var(0), z))), env) << "\n"; } static void tst1() { environment env; env.add_var("t", Type()); expr t = Type(); env.add_var("f", mk_arrow(t, t)); expr f = Const("f"); env.add_var("a", t); expr a = Const("a"); env.add_var("b", t); expr b = Const("b"); expr x = Var(0); expr y = Var(1); eval(mk_app(mk_lambda("x", t, x), a), env); eval(mk_app(mk_lambda("x", t, x), a, b), env); eval(mk_lambda("x", t, f(x)), env); eval(mk_lambda("y", t, mk_lambda("x", t, f(y, x))), env); eval(mk_app(mk_lambda("x", t, mk_app(mk_lambda("f", t, mk_app(Var(0), b)), mk_lambda("g", t, f(Var(1))))), a), env); expr l01 = lam(v(0)(v(1))); expr l12 = lam(lam(v(1)(v(2)))); eval(lam(l12(l01)), env); lean_assert(normalize(lam(l12(l01)), env) == lam(lam(v(1)(v(1))))); } static void tst2() { environment env; expr t = Type(); env.add_var("f", mk_arrow(t, t)); expr f = Const("f"); env.add_var("a", t); expr a = Const("a"); env.add_var("b", t); expr b = Const("b"); env.add_var("h", mk_arrow(t, t)); expr h = Const("h"); expr x = Var(0); expr y = Var(1); lean_assert(normalize(f(x,x), env, extend(context(), name("f"), t, f(a))) == f(f(a), f(a))); context c1 = extend(extend(context(), name("f"), t, f(a)), name("h"), t, h(x)); expr F1 = normalize(f(x,f(x)), env, c1); lean_assert(F1 == f(h(f(a)), f(h(f(a))))); std::cout << F1 << "\n"; expr F2 = normalize(mk_lambda("x", t, f(x, f(y))), env, c1); std::cout << F2 << "\n"; lean_assert(F2 == mk_lambda("x", t, f(x, f(h(f(a)))))); expr F3 = normalize(mk_lambda("y", t, mk_lambda("x", t, f(x, f(y)))), env, c1); std::cout << F3 << "\n"; lean_assert(F3 == mk_lambda("y", t, mk_lambda("x", t, f(x, f(y))))); context c2 = extend(extend(context(), name("foo"), t, mk_lambda("x", t, f(x, a))), name("bla"), t, mk_lambda("z", t, h(x,y))); expr F4 = normalize(mk_lambda("x", t, f(x, f(y))), env, c2); std::cout << F4 << "\n"; lean_assert(F4 == mk_lambda("x", t, f(x, f(mk_lambda("z", t, h(x,mk_lambda("x", t, f(x, a)))))))); context c3 = extend(context(), name("x"), t); expr f5 = mk_app(mk_lambda("f", t, mk_lambda("z", t, Var(1))), mk_lambda("y", t, Var(1))); expr F5 = normalize(f5, env, c3); std::cout << f5 << "\n---->\n"; std::cout << F5 << "\n"; lean_assert(F5 == mk_lambda("z", t, mk_lambda("y", t, Var(2)))); context c4 = extend(extend(context(), name("x"), t), name("x2"), t); expr F6 = normalize(mk_app(mk_lambda("f", t, mk_lambda("z1", t, mk_lambda("z2", t, mk_app(Var(2), Const("a"))))), mk_lambda("y", t, mk_app(Var(1), Var(2), Var(0)))), env, c4); std::cout << F6 << "\n"; lean_assert(F6 == mk_lambda("z1", t, mk_lambda("z2", t, mk_app(Var(2), Var(3), Const("a"))))); } static void tst3() { environment env = mk_toplevel(); env.add_var("a", Bool); expr t1 = Const("a"); expr t2 = Const("a"); expr e = Eq(t1, t2); std::cout << e << " --> " << normalize(e, env) << "\n"; lean_assert(normalize(e, env) == True); } static void tst4() { environment env; env.add_var("b", Type()); expr t1 = mk_let("a", expr(), Const("b"), mk_lambda("c", Type(), Var(1)(Var(0)))); std::cout << t1 << " --> " << normalize(t1, env) << "\n"; lean_assert(normalize(t1, env) == mk_lambda("c", Type(), Const("b")(Var(0)))); } static expr mk_big(unsigned depth) { if (depth == 0) return Const("a"); else return Const("f")(mk_big(depth - 1), mk_big(depth - 1)); } static void tst5() { #ifndef __APPLE__ expr t = mk_big(18); environment env = mk_toplevel(); env.add_var("f", Bool >> (Bool >> Bool)); env.add_var("a", Bool); normalizer proc(env); std::chrono::milliseconds dura(50); std::thread thread([&]() { try { proc(t); // Remark: if the following code is reached, we // should decrease dura. lean_unreachable(); } catch (interrupted & it) { std::cout << "interrupted\n"; } }); std::this_thread::sleep_for(dura); proc.interrupt(); thread.join(); #endif } static void tst6() { environment env; expr x = Const("x"); expr t = Fun({x, Type()}, mk_app(x, x)); expr omega = mk_app(t, t); normalizer proc(env, 512); try { proc(omega); } catch (kernel_exception & ex) { std::cout << ex.what() << "\n"; } } int main() { tst_church_numbers(); tst1(); tst2(); tst3(); tst4(); tst5(); tst6(); return has_violations() ? 1 : 0; }