/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Soonho Kong */ #pragma once #include #include "mpfp.h" namespace lean { /** \brief Template specializations define traits for native and lean numeric types. */ void double_power(double & v, unsigned k); void double_abs(double & v); void double_ceil(double & v); void double_floor(double & v); // Macro to implement transcendental functions using MPFR #define LEAN_TRANS_DOUBLE_FUNC(f, v, rnd) \ static thread_local mpfp t(53); \ t = v; \ t.f(rnd); \ v = t.get_double(rnd); void set_double_rnd(bool plus_inf); mpfr_rnd_t get_double_rnd(); template<> class numeric_traits { public: static bool precise() { return false; } static bool is_zero(double v) { return v == 0.0; } static bool is_pos(double v) { return v > 0.0; } static bool is_neg(double v) { return v < 0.0; } static mpfr_rnd_t rnd() { return get_double_rnd(); } static void set_rounding(bool plus_inf) { set_double_rnd(plus_inf); } static void neg(double & v) { v = -v; } static void inv(double & v) { v = 1.0/v; } static void reset(double & v) { v = 0.0; } static void power(double & v, unsigned k) { double_power(v, k); } static void abs(double & v) { double_abs(v); } static void ceil(double & v) { double_ceil(v); } static void floor(double & v) { double_floor(v); } static double const & min(double const & v1, double const & v2) { return v1 < v2 ? v1 : v2; } static double const & max(double const & v1, double const & v2) { return v1 > v2 ? v1 : v2; } // constants static const double constexpr pi_l = (3373259426.0 + 273688.0 / (1<<21)) / (1<<30); static const double constexpr pi_n = (3373259426.0 + 273688.0 / (1<<21)) / (1<<30); static const double constexpr pi_u = (3373259426.0 + 273689.0 / (1<<21)) / (1<<30); static inline double pi_lower() { return pi_l; } static inline double pi() { return pi_n; } static inline double pi_upper() { return pi_u; } static inline double pi_half_lower() { return pi_l / 2; } static inline double pi_half() { return pi_n / 2; } static inline double pi_half_upper() { return pi_u / 2; } static inline double pi_twice_lower() { return pi_l * 2; } static inline double pi_twice() { return pi_n * 2; } static inline double pi_twice_upper() { return pi_u * 2; } // Transcendental functions using MPFR static void exp(double & v) { LEAN_TRANS_DOUBLE_FUNC(exp, v, rnd()); } static void exp2(double & v) { LEAN_TRANS_DOUBLE_FUNC(exp2, v, rnd()); } static void exp10(double & v) { LEAN_TRANS_DOUBLE_FUNC(exp10, v, rnd()); } static void log(double & v) { LEAN_TRANS_DOUBLE_FUNC(log, v, rnd()); } static void log2(double & v) { LEAN_TRANS_DOUBLE_FUNC(log2, v, rnd()); } static void log10(double & v) { LEAN_TRANS_DOUBLE_FUNC(log10, v, rnd()); } static void sin(double & v) { LEAN_TRANS_DOUBLE_FUNC(sin, v, rnd()); } static void cos(double & v) { LEAN_TRANS_DOUBLE_FUNC(cos, v, rnd()); } static void tan(double & v) { LEAN_TRANS_DOUBLE_FUNC(tan, v, rnd()); } static void sec(double & v) { LEAN_TRANS_DOUBLE_FUNC(sec, v, rnd()); } static void csc(double & v) { LEAN_TRANS_DOUBLE_FUNC(csc, v, rnd()); } static void cot(double & v) { LEAN_TRANS_DOUBLE_FUNC(cot, v, rnd()); } static void asin(double & v) { LEAN_TRANS_DOUBLE_FUNC(asin, v, rnd()); } static void acos(double & v) { LEAN_TRANS_DOUBLE_FUNC(acos, v, rnd()); } static void atan(double & v) { LEAN_TRANS_DOUBLE_FUNC(atan, v, rnd()); } static void sinh(double & v) { LEAN_TRANS_DOUBLE_FUNC(sinh, v, rnd()); } static void cosh(double & v) { LEAN_TRANS_DOUBLE_FUNC(cosh, v, rnd()); } static void tanh(double & v) { LEAN_TRANS_DOUBLE_FUNC(tanh, v, rnd()); } static void asinh(double & v) { LEAN_TRANS_DOUBLE_FUNC(asinh, v, rnd()); } static void acosh(double & v) { LEAN_TRANS_DOUBLE_FUNC(acosh, v, rnd()); } static void atanh(double & v) { LEAN_TRANS_DOUBLE_FUNC(atanh, v, rnd()); } }; }