/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about embeddings and surjections -/ import hit.trunc types.equiv cubical.square open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod variables {A B C : Type} (f : A → B) {b : B} /- the image of a map is the (-1)-truncated fiber -/ definition image' [constructor] (f : A → B) (b : B) : Type := ∥ fiber f b ∥ definition is_prop_image' [instance] (f : A → B) (b : B) : is_prop (image' f b) := !is_trunc_trunc definition image [constructor] (f : A → B) (b : B) : Prop := Prop.mk (image' f b) _ definition image.mk [constructor] {f : A → B} {b : B} (a : A) (p : f a = b) : image f b := tr (fiber.mk a p) protected definition image.rec [unfold 8] [recursor 8] {f : A → B} {b : B} {P : image' f b → Type} [H : Πv, is_prop (P v)] (H : Π(a : A) (p : f a = b), P (image.mk a p)) (v : image' f b) : P v := begin unfold [image'] at *, induction v with v, induction v with a p, exact H a p end definition is_embedding [class] (f : A → B) := Π(a a' : A), is_equiv (ap f : a = a' → f a = f a') definition is_surjective [class] (f : A → B) := Π(b : B), image f b definition is_split_surjective [class] (f : A → B) := Π(b : B), fiber f b structure is_retraction [class] (f : A → B) := (sect : B → A) (right_inverse : Π(b : B), f (sect b) = b) structure is_section [class] (f : A → B) := (retr : B → A) (left_inverse : Π(a : A), retr (f a) = a) definition is_weakly_constant [class] (f : A → B) := Π(a a' : A), f a = f a' structure is_constant [class] (f : A → B) := (pt : B) (eq : Π(a : A), f a = pt) structure is_conditionally_constant [class] (f : A → B) := (g : ∥A∥ → B) (eq : Π(a : A), f a = g (tr a)) namespace function abbreviation sect [unfold 4] := @is_retraction.sect abbreviation right_inverse [unfold 4] := @is_retraction.right_inverse abbreviation retr [unfold 4] := @is_section.retr abbreviation left_inverse [unfold 4] := @is_section.left_inverse definition is_equiv_ap_of_embedding [instance] [H : is_embedding f] (a a' : A) : is_equiv (ap f : a = a' → f a = f a') := H a a' definition ap_inv_idp {a : A} {H : is_equiv (ap f : a = a → f a = f a)} : (ap f)⁻¹ᶠ idp = idp :> a = a := !left_inv variable {f} definition is_injective_of_is_embedding [reducible] [H : is_embedding f] {a a' : A} : f a = f a' → a = a' := (ap f)⁻¹ definition is_embedding_of_is_injective [HA : is_set A] [HB : is_set B] (H : Π(a a' : A), f a = f a' → a = a') : is_embedding f := begin intro a a', fapply adjointify, {exact (H a a')}, {intro p, apply is_set.elim}, {intro p, apply is_set.elim} end variable (f) definition is_prop_is_embedding [instance] : is_prop (is_embedding f) := by unfold is_embedding; exact _ definition is_embedding_equiv_is_injective [HA : is_set A] [HB : is_set B] : is_embedding f ≃ (Π(a a' : A), f a = f a' → a = a') := begin fapply equiv.MK, { apply @is_injective_of_is_embedding}, { apply is_embedding_of_is_injective}, { intro H, apply is_prop.elim}, { intro H, apply is_prop.elim, } end definition is_prop_fiber_of_is_embedding [H : is_embedding f] (b : B) : is_prop (fiber f b) := begin apply is_prop.mk, intro v w, induction v with a p, induction w with a' q, induction q, fapply fiber_eq, { esimp, apply is_injective_of_is_embedding p}, { esimp [is_injective_of_is_embedding], symmetry, apply right_inv} end definition is_prop_fun_of_is_embedding [H : is_embedding f] : is_trunc_fun -1 f := is_prop_fiber_of_is_embedding f definition is_embedding_of_is_prop_fun [constructor] [H : is_trunc_fun -1 f] : is_embedding f := begin intro a a', fapply adjointify, { intro p, exact ap point (@is_prop.elim (fiber f (f a')) _ (fiber.mk a p) (fiber.mk a' idp))}, { intro p, rewrite [-ap_compose], esimp, apply ap_con_eq (@point_eq _ _ f (f a'))}, { intro p, induction p, apply ap (ap point), apply is_prop_elim_self} end variable {f} definition is_surjective_rec_on {P : Type} (H : is_surjective f) (b : B) [Pt : is_prop P] (IH : fiber f b → P) : P := trunc.rec_on (H b) IH variable (f) definition is_surjective_of_is_split_surjective [instance] [H : is_split_surjective f] : is_surjective f := λb, tr (H b) definition is_prop_is_surjective [instance] : is_prop (is_surjective f) := begin unfold is_surjective, exact _ end definition is_surjective_cancel_right {A B C : Type} (g : B → C) (f : A → B) [H : is_surjective (g ∘ f)] : is_surjective g := begin intro c, induction H c with a p, exact tr (fiber.mk (f a) p) end definition is_weakly_constant_ap [instance] [H : is_weakly_constant f] (a a' : A) : is_weakly_constant (ap f : a = a' → f a = f a') := take p q : a = a', have Π{b c : A} {r : b = c}, (H a b)⁻¹ ⬝ H a c = ap f r, from (λb c r, eq.rec_on r !con.left_inv), this⁻¹ ⬝ this definition is_constant_ap [unfold 4] [instance] [H : is_constant f] (a a' : A) : is_constant (ap f : a = a' → f a = f a') := begin induction H with b q, fapply is_constant.mk, { exact q a ⬝ (q a')⁻¹}, { intro p, induction p, exact !con.right_inv⁻¹} end definition is_contr_is_retraction [instance] [H : is_equiv f] : is_contr (is_retraction f) := begin have H2 : (Σ(g : B → A), Πb, f (g b) = b) ≃ is_retraction f, begin fapply equiv.MK, {intro x, induction x with g p, constructor, exact p}, {intro h, induction h, apply sigma.mk, assumption}, {intro h, induction h, reflexivity}, {intro x, induction x, reflexivity}, end, apply is_trunc_equiv_closed, exact H2, apply is_equiv.is_contr_right_inverse end definition is_contr_is_section [instance] [H : is_equiv f] : is_contr (is_section f) := begin have H2 : (Σ(g : B → A), Πa, g (f a) = a) ≃ is_section f, begin fapply equiv.MK, {intro x, induction x with g p, constructor, exact p}, {intro h, induction h, apply sigma.mk, assumption}, {intro h, induction h, reflexivity}, {intro x, induction x, reflexivity}, end, apply is_trunc_equiv_closed, exact H2, fapply is_trunc_equiv_closed, {apply sigma_equiv_sigma_right, intro g, apply eq_equiv_homotopy}, fapply is_trunc_equiv_closed, {apply fiber.sigma_char}, fapply is_contr_fiber_of_is_equiv, exact to_is_equiv (arrow_equiv_arrow_left_rev A (equiv.mk f H)), end definition is_embedding_of_is_equiv [instance] [H : is_equiv f] : is_embedding f := λa a', _ definition is_equiv_of_is_surjective_of_is_embedding [H : is_embedding f] [H' : is_surjective f] : is_equiv f := @is_equiv_of_is_contr_fun _ _ _ (λb, is_surjective_rec_on H' b (λa, is_contr.mk a (λa', fiber_eq ((ap f)⁻¹ ((point_eq a) ⬝ (point_eq a')⁻¹)) (by rewrite (right_inv (ap f)); rewrite inv_con_cancel_right)))) definition is_split_surjective_of_is_retraction [H : is_retraction f] : is_split_surjective f := λb, fiber.mk (sect f b) (right_inverse f b) definition is_constant_compose_point [constructor] [instance] (b : B) : is_constant (f ∘ point : fiber f b → B) := is_constant.mk b (λv, by induction v with a p;exact p) definition is_embedding_of_is_prop_fiber [H : Π(b : B), is_prop (fiber f b)] : is_embedding f := is_embedding_of_is_prop_fun _ definition is_retraction_of_is_equiv [instance] [H : is_equiv f] : is_retraction f := is_retraction.mk f⁻¹ (right_inv f) definition is_section_of_is_equiv [instance] [H : is_equiv f] : is_section f := is_section.mk f⁻¹ (left_inv f) definition is_equiv_of_is_section_of_is_retraction [H1 : is_retraction f] [H2 : is_section f] : is_equiv f := let g := sect f in let h := retr f in adjointify f g (right_inverse f) (λa, calc g (f a) = h (f (g (f a))) : left_inverse ... = h (f a) : right_inverse f ... = a : left_inverse) section local attribute is_equiv_of_is_section_of_is_retraction [instance] [priority 10000] local attribute trunctype.struct [instance] [priority 1] -- remove after #842 is closed variable (f) definition is_prop_is_retraction_prod_is_section : is_prop (is_retraction f × is_section f) := begin apply is_prop_of_imp_is_contr, intro H, induction H with H1 H2, exact _, end end definition is_retraction_trunc_functor [instance] (r : A → B) [H : is_retraction r] (n : trunc_index) : is_retraction (trunc_functor n r) := is_retraction.mk (trunc_functor n (sect r)) (λb, ((trunc_functor_compose n (sect r) r) b)⁻¹ ⬝ trunc_homotopy n (right_inverse r) b ⬝ trunc_functor_id n B b) -- Lemma 3.11.7 definition is_contr_retract (r : A → B) [H : is_retraction r] : is_contr A → is_contr B := begin intro CA, apply is_contr.mk (r (center A)), intro b, exact ap r (center_eq (is_retraction.sect r b)) ⬝ (is_retraction.right_inverse r b) end local attribute is_prop_is_retraction_prod_is_section [instance] definition is_retraction_prod_is_section_equiv_is_equiv [constructor] : (is_retraction f × is_section f) ≃ is_equiv f := begin apply equiv_of_is_prop, intro H, induction H, apply is_equiv_of_is_section_of_is_retraction, intro H, split, repeat exact _ end definition is_retraction_equiv_is_split_surjective : is_retraction f ≃ is_split_surjective f := begin fapply equiv.MK, { intro H, induction H with g p, intro b, constructor, exact p b}, { intro H, constructor, intro b, exact point_eq (H b)}, { intro H, esimp, apply eq_of_homotopy, intro b, esimp, induction H b, reflexivity}, { intro H, induction H with g p, reflexivity}, end definition is_embedding_compose (g : B → C) (f : A → B) (H₁ : is_embedding g) (H₂ : is_embedding f) : is_embedding (g ∘ f) := begin intros, apply @(is_equiv.homotopy_closed (ap g ∘ ap f)), { apply is_equiv_compose}, symmetry, exact ap_compose g f end definition is_surjective_compose (g : B → C) (f : A → B) (H₁ : is_surjective g) (H₂ : is_surjective f) : is_surjective (g ∘ f) := begin intro c, induction H₁ c with b p, induction H₂ b with a q, exact image.mk a (ap g q ⬝ p) end definition is_split_surjective_compose (g : B → C) (f : A → B) (H₁ : is_split_surjective g) (H₂ : is_split_surjective f) : is_split_surjective (g ∘ f) := begin intro c, induction H₁ c with b p, induction H₂ b with a q, exact fiber.mk a (ap g q ⬝ p) end definition is_injective_compose (g : B → C) (f : A → B) (H₁ : Π⦃b b'⦄, g b = g b' → b = b') (H₂ : Π⦃a a'⦄, f a = f a' → a = a') ⦃a a' : A⦄ (p : g (f a) = g (f a')) : a = a' := H₂ (H₁ p) /- The definitions is_surjective_of_is_equiv is_equiv_equiv_is_embedding_times_is_surjective are in types.trunc See types.arrow_2 for retractions -/ end function