/- Copyright (c) 2015 Daniel Selsam. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Daniel Selsam -/ import algebra.ring algebra.numeral namespace simplifier namespace sum_of_monomials attribute algebra.add.assoc [simp] attribute algebra.add.comm [simp] attribute algebra.add.left_comm [simp] attribute algebra.mul.left_comm [simp] attribute algebra.mul.comm [simp] attribute algebra.mul.assoc [simp] attribute algebra.left_distrib [simp] attribute algebra.right_distrib [simp] end sum_of_monomials namespace units attribute algebra.zero_add [simp] attribute algebra.add_zero [simp] attribute algebra.zero_mul [simp] attribute algebra.mul_zero [simp] attribute algebra.one_mul [simp] attribute algebra.mul_one [simp] end units -- TODO(dhs): remove `add1` from the original lemmas and delete this namespace numeral_helper open algebra theorem bit1_add_bit1 {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a b : A) : bit1 a + bit1 b = bit0 ((a + b) + 1) := norm_num.bit1_add_bit1 a b theorem bit1_add_one {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A) : bit1 a + one = bit0 (a + 1) := norm_num.add1_bit1 a theorem one_add_bit1 {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A) : one + bit1 a = bit0 (a + 1) := by rewrite [!add.comm, bit1_add_one] lemma one_add_bit0 [simp] {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A) : 1 + bit0 a = bit1 a := norm_num.one_add_bit0 a lemma bit0_add_one [simp] {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A) : bit0 a + 1 = bit1 a := norm_num.bit0_add_one a lemma mul_bit0_helper0 [simp] {A : Type} [s : comm_ring A] (a b : A) : bit0 a * bit0 b = bit0 (bit0 a * b) := norm_num.mul_bit0_helper (bit0 a) b (bit0 a * b) rfl lemma mul_bit0_helper1 [simp] {A : Type} [s : comm_ring A] (a b : A) : bit1 a * bit0 b = bit0 (bit1 a * b) := norm_num.mul_bit0_helper (bit1 a) b (bit1 a * b) rfl lemma mul_bit1_helper0 [simp] {A : Type} [s : comm_ring A] (a b : A) : bit0 a * bit1 b = bit0 (bit0 a * b) + bit0 a := norm_num.mul_bit1_helper (bit0 a) b (bit0 a * b) (bit0 (bit0 a * b) + bit0 a) rfl rfl lemma mul_bit1_helper1 [simp] {A : Type} [s : comm_ring A] (a b : A) : bit1 a * bit1 b = bit0 (bit1 a * b) + bit1 a := norm_num.mul_bit1_helper (bit1 a) b (bit1 a * b) (bit0 (bit1 a * b) + bit1 a) rfl rfl end numeral_helper namespace numeral attribute norm_num.bit0_add_bit0 [simp] attribute numeral_helper.bit1_add_one [simp] attribute norm_num.bit1_add_bit0 [simp] attribute numeral_helper.bit1_add_bit1 [simp] attribute norm_num.bit0_add_bit1 [simp] attribute numeral_helper.one_add_bit1 [simp] attribute algebra.zero_add [simp] attribute algebra.add_zero [simp] attribute norm_num.one_add_one [simp] attribute numeral_helper.one_add_bit0 [simp] attribute numeral_helper.bit0_add_one [simp] attribute numeral_helper.mul_bit0_helper0 [simp] attribute numeral_helper.mul_bit0_helper1 [simp] attribute numeral_helper.mul_bit1_helper0 [simp] attribute numeral_helper.mul_bit1_helper1 [simp] attribute algebra.zero_mul [simp] attribute algebra.mul_zero [simp] attribute algebra.one_mul [simp] attribute algebra.mul_one [simp] end numeral end simplifier